不同流量下泵前微压网式过滤器内部流场的数值模拟
陈领伟, 陶洪飞, 马合木江·艾合买提, 李巧, 姜有为
不同流量下泵前微压网式过滤器内部流场的数值模拟
Numerical Simulation of the Flow Field Inside a Micro-Pressure Mesh Filter in Front of a Pump at Different Flow Rates
泵前微压网式过滤器作为一种新型的灌溉过滤装置,具有结构简单、适配性高以及能耗低等优点。为了探究泵前微压网式过滤器内部流场的运行状态,采用了物理模型试验、数值计算及理论分析的方法,从微观角度对清水条件下泵前微压网式过滤器在不同流量(5、8、11、14、17 m3/h)的水力性能和水流运动状态进行分析。结果表明:标准 k-ε模型可作为模拟泵前微压网式过滤器清水流场的湍流模型;滤网内部流速分布不均匀,随流量呈现不同形态的“火烛”形态,出水口对过滤器内部影响范围随流量增加而增大;过滤器内部同时出现高压区和负压区,滤网底部为水头损失主要发生位置。研究成果可为泵前过滤设备的浑水数值模拟和结构优化提供理论和技术支撑。
As a novel type of irrigation filtration device, the pre-pump micro-pressure mesh filter has the advantages of simple structure, high adaptability and low energy consumption. To investigate the operation state of the internal flow field of the pre-pump micro-pressure mesh filter, this paper adopts the methods of physical model test, numerical calculation and theoretical analysis to analyze the hydraulic performance and water movement state of the pre-pump micro-pressure mesh filter at different flow rates (5, 8, 11, 14 and 17 m3/h) under the condition of clear water from a microscopic point of view. The results indicate that the standard k-ε model can be used as a turbulence model to simulate the clear-water flow field of the pre-pump micro-pressure mesh filter. The flow velocity distribution inside the filter mesh is not uniform, and presents different forms of "fire candle" morphology with the flow rate.The range of influence of the outlet on the inside of the filter increases with the increase of flow rate. High-pressure and negative-pressure areas appear simultaneously inside the filter, and the bottom of the screen is the main location of head loss. The research results can provide theoretical and technical support for the numerical simulation and structural optimization of turbid water in the pre-pump filtration equipment.
泵前微压过滤器 / 水头损失 / 数值模拟 / 云图 {{custom_keyword}} /
pre-pump micro-pressure filter / head loss / numerical simulation / cloud diagrams {{custom_keyword}} /
表1 网格无关性检验Tab.1 Grid-independence test |
编号 | 网格数量/个 | 计算水头损失/m | 实际水头损失/m | 相对误差/% |
---|---|---|---|---|
1 | 381 766 | 0.094 5 | 0.120 3 | 21.44 |
2 | 447 060 | 0.097 4 | 19.04 | |
3 | 543 606 | 0.098 6 | 18.54 | |
4 | 659 200 | 0.100 3 | 16.63 | |
5 | 832 384 | 0.103 7 | 13.80 | |
6 | 1 080 200 | 0.109 0 | 9.39 | |
7 | 1 254 026 | 0.128 5 | 6.82 | |
8 | 1 443 282 | 0.181 8 | 51.12 |
表2 不同湍流模型相对误差的对比Tab.2 Comparison of relative errors of different turbulence models |
湍流模型 | 水头损失/m | 相对误差/% | |
---|---|---|---|
数值模拟 | 物理试验 | ||
标准 k-ε | 0.109 0 | 0.120 3 | 9.39 |
RNG k-ε | 0.093 7 | 22.11 | |
Realizable k-ε | 0.096 3 | 19.95 |
表3 不同流量下标准k-ε数值模拟的验证Tab.3 Validation of standard k-ε numerical simulations at different flow rates |
工况 | 流量/(m3•h-1) | 物理试验水头损失/m | 数值模拟水头损失/m | 相对误差/% |
---|---|---|---|---|
1 | 5 | 0.038 1 | 0.043 6 | 14.48 |
2 | 8 | 0.073 8 | 0.071 8 | 2.66 |
3 | 11 | 0.120 3 | 0.109 0 | 9.39 |
4 | 14 | 0.183 1 | 0.178 3 | 2.62 |
5 | 17 | 0.262 9 | 0.253 2 | 3.69 |
1 |
秦大河. 中国西部环境演变评估(第二卷)[M]. 北京:科学出版化,2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张娟娟,徐建新,黄修桥,等. 国内微灌用叠片过滤器研究现状综述[J]. 节水灌溉, 2015(3):59-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘晓初,谈世松,何铨鹏,等. Y型筛网式过滤器水头损失研究[J]. 中国农村水利水电, 2015(11):24-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
宗全利,杨洪飞,刘贞姬,等. 网式过滤器滤网堵塞成因分析与压降计算[J]. 农业机械学报, 2017, 48(9):215-222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
石凯,刘贞姬,李曼. 新型翻板网式过滤器水头损失试验研究[J]. 排灌机械工程学报, 2020,38(4):427-432.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
喻黎明,李俊锋,李娜,等. 不同网孔与筒体模型对Y型网式过滤器性能的影响[J]. 农业工程学报, 2023,39(14):97-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
阿力甫江·阿不里米提,虎胆·吐马尔白,木拉提·玉赛音,等. 不同尺寸鱼雷网式过滤器内流场数值模拟[J]. 节水灌溉, 2019(1): 102-107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
陶洪飞,朱玲玲,马英杰,等. 滤网孔径对网式过滤器内部流场的影响[J]. 灌溉排水学报, 2017,36(12): 68-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
杜思琦,韩启彪,李盛宝,等. 滴灌用过滤装置的研究现状及发展趋势[J]. 节水灌溉, 2020(3): 57-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陶洪飞,周洋,李巧,等. 泵前微压过滤装置:CN211836588U[P]. 2020-11-03.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
谢炎. 卧式自清洗网式过滤器的水力性能理论分析及数值模拟[D]. 新疆石河子:石河子大学,2022. XIE Y. Theoretical analysis and numerical simulation of hydraulic performance of horizontal self-cleaning mesh filter[D]. Shihezi, Xinjiang: Shihezi University, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
曹东亮. 基于CFD-DEM耦合的Y型网式过滤器多目标结构设计与优化[D]. 昆明:昆明理工大学,2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
刘凯硕. Y型网式过滤器流场数值模拟及滤网优化研究[D]. 昆明:昆明理工大学,2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
喻黎明,刘凯硕,韩栋, 等. 不同工况下Y型网式过滤器流场数值模拟分析[J]. 农业机械学报, 2022,53(2):346-354.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
喻黎明,曹东亮,李久霖,等. Y型网式过滤器多目标优化正交试验[J]. 农业机械学报, 2022,53(9): 322-333.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
阿力甫江·阿不里米提. 典型鱼雷网式过滤器的试验研究及数值模拟[D]. 乌鲁木齐:新疆农业大学,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
周理强,韩栋,喻黎明,等. 导流片对Y型网式过滤器性能的影响[J]. 农业工程学报, 2020,36(12):40-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
陶洪飞,朱玲玲,马英杰,等. 网式过滤器的计算模型选择及内部流场分析[J]. 节水灌溉, 2016(10):83-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |