温室番茄水-沼液一体化的非充分灌溉模式评价

杨赟, 郑健, 撒青林, 杨少鸿

PDF(1048 KB)
节水灌溉 ›› 2024 ›› (6) : 87-94. DOI: 10.12396/jsgg.2023443
水肥高效利用

温室番茄水-沼液一体化的非充分灌溉模式评价

作者信息 +

Evaluation of Deficit Irrigation Model for Greenhouse Tomato Water-biogas Integration

Author information +
稿件信息 +

摘要

为探求温室番茄合理的水-沼液一体化非充分灌溉模式,于2021年3-7月和9-12月在甘肃省兰州市七里河区温室开展两季试验研究。应用水-沼液一体化穴灌技术在番茄3个生育期(苗期、开花坐果期和果实成熟期)设置高水低肥(充分灌溉)、中水中肥(轻度亏缺)、低水高肥(中度亏缺)3个水-沼液一体化非充分灌溉施肥水平,分析不同处理对番茄产量、灌溉水利用效率及品质的影响。构建了番茄综合品质递阶层次结构模型,并运用近似理想解(TOPSIS法)得到番茄综合品质评价值。同时,将番茄的产量、灌溉水利用效率、综合品质作为番茄综合效益的评价指标,应用组合评价法获得不同处理下番茄综合效益评价值。结果表明:T8处理(3个生育阶段均采用中水中肥)番茄单株产量最高为5.612 kg(2021年春)和5.032 kg(2021年秋);T9处理(3个生育阶段均采用低水高肥)番茄灌溉水利用效率最优为0.173 kg/L(2021年春)和0.171 kg/L(2021年秋);T8处理的番茄果形比、糖酸比、可溶性固形物、维生素C、可溶性蛋白质、果实含水率均为最高,番茄可溶性糖、可滴定酸和硬度最大值分别出现在T9、T4(苗期采用中水中肥,开花坐果期采用加低水高肥、果实成熟期采用高水低肥)和T3(苗期采用中水中肥、开花坐果期采用高水低肥、果实成熟期采用低水高肥)处理;两季试验中番茄综合品质评价和综合效益结果最好的均为T8处理。

Abstract

To explore an optimal integrated water-biogas deficit irrigation model for greenhouse tomatoes, a two-season experiment was conducted in March-July 2021 and September-December 2021 in a greenhouse in Lanzhou City, Gansu Province, China. Three irrigation and fertilization levels: high water and low fertilizer (full irrigation), medium water and medium fertilizer (mild deficit irrigation), and low water and high fertilizer (moderate deficit irrigation) were set at three growth stages (seedling, fruiting, and fruit ripening) of tomatoes to analyze the effects of different treatments on tomato yield, water use efficiency, and quality. A hierarchical model of tomato integrated quality was constructed, and an approximate ideal solution (the TOPSIS method) was applied to obtain the tomato integrated quality evaluation value. At the same time, the yield, water use efficiency, and comprehensive quality of tomato were taken as the evaluation indexes of comprehensive benefit of tomato. A combined evaluation method was applied to obtain the evaluation value of comprehensive benefit of tomato under different water and fertilization treatments. The results showed that: T8 treatment (using medium water and fertilizer in all three growth stages) had the highest yield of 5.612 kg (spring 2021) and 5.032 kg (autumn 2021); T9 treatment (using low water and high fertilizer in all three fertility stages) had the optimal tomato water use efficiency of 0.173 kg/L (spring 2021) and 0.171 kg/L (autumn 2021). The highest fruit shape ratio, sugar-acid ratio, soluble solids, vitamin C, soluble proteins, and fruit water content were found in the T8 treatment. The highest values of soluble sugars, titratable acids, and hardness were found in the T9, T4 (medium-water fertilizer at seedling stage, plus low water and high fertilizer at flowering and fruit setting stages, and high water and low fertilizer at fruit setting stages), and T3 (medium-water fertilizer at seedling stage, high water and low fertilizer at flowering and fruit setting stages, and high water and low fertilizer at fruit setting stages), respectively. The best comprehensive quality evaluation and comprehensive benefits of tomato in the two-season trial were obtained in the T8 treatment.

关键词

番茄 / 非充分灌溉 / 水-沼液一体化 / 沼液浓度 / 综合品质 / 综合效益 / 评价

Key words

tomato / deficit irrigation / water-biogas slurry integration / biogas slurry concentration / comprehensive quality / comprehensive benefits / evaluation

基金

国家自然科学基金项目(51969012)
济南市水务科技项目(JNSWKJ202206)
2023年高校教师创新基金项目(2023B-431)

引用本文

导出引用
杨赟 , 郑健 , 撒青林 , 杨少鸿. 温室番茄水-沼液一体化的非充分灌溉模式评价[J].节水灌溉, 2024(6): 87-94 https://doi.org/10.12396/jsgg.2023443
YANG Yun , ZHENG Jian , SA Qing-lin , YANG Shao-hong. Evaluation of Deficit Irrigation Model for Greenhouse Tomato Water-biogas Integration[J].Water Saving Irrigation, 2024(6): 87-94 https://doi.org/10.12396/jsgg.2023443

参考文献

1
DEBAEKE P, ABOUDRARE A. Adaptation of crop management to water-limited environments[J]. European Journal of Agronomy, 2004, 21(4): 433-446.
2
GEERTS S, RAES D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas[J]. Agricultural Water Management, 2009, 96(9): 1 275-1 284.
3
宋 歌,陈玉珊,张 珊,等. 非充分灌溉条件下多目标整数规划配水模型构建[J]. 农业工程学报202238(9):129-139.
SONG G, CHEN Y S, ZHANG S, et al. Construction of water allocation model with multi-objective integer programming under inadequate irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 129-139.
4
魏永霞,马瑛瑛,刘 慧,等. 调亏灌溉下滴灌玉米植株与土壤水分及节水增产效应[J]. 农业机械学报201849(3): 252-260.
WEI Y X, MA Y Y, LIU H, et al. Effects of soil water, plant, water saving and yield increasing of maize under regulated deficit drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3): 252-260.
5
LIU M, WANG Z, MU L, et al. Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China[J]. Agricultural Water Management, 2021, 248: 106 764.
6
付诗宁,魏新光,郑思宇,等. 滴灌水肥一体化对温室葡萄生理特性及水肥利用效率的影响[J]. 农业工程学报202137(23): 61-72.
FU S, WEI X G, ZHENG S Y, et al. Effects of integrated management of water and fertilizer on the physiological characteristics and water- fertilizer use efficiency of grapes in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 61-72.
7
杨 赟,郑 健,齐兴贇. 不同水-沼液一体化间接地下滴灌模式对番茄生长、产量和品质的影响[J]. 节水灌溉2022(8):30-37, 45.
YANG Y, ZHENG J, QI X Y. Effect of different water/biogas integrated indirect subsurface drip irrigation patterns on tomato growth, yield and quality[J]. Water Saving Irrigation, 2022(8): 30-37.
8
WANG L, GUO S R, WANG Y, et al. Poultry biogas slurry can partially substitute for mineral fertilizers in hydroponic lettuce production[J]. Environmental Science and Pollution Research International, 2019, 26(1): 659-671.
9
TANG Y, WEN G, LI P, et al. Effects of biogas slurry application on crop production and soil properties in a rice–wheat rotation on coastal reclaimed farmland[J]. Water, Air, & Soil Pollution, 2019, 230: 1-13.
10
ZHENG J, QI X Y, YANG S H, et al. Effect and evaluation of biogas slurry irrigation technology and method on tomato growth, yield and quality[J]. IJABE, 2022; 15(5): 123-131.
11
ZHENG J, LI X, ZHANG Y, et al. Effects of digestate application on tomato growth, yield, quality, and soil Nitrogen content via integrated hole irrigation[J]. Journal of Biobased Materials and Bioenergy, 2019,13(5): 620-634.
12
YANG L, ZHAO F, CHANG Q, et al. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes[J]. Agricultural Water Management, 2015, 160: 98-105.
13
齐兴贇. 番茄水/沼液一体化间接地下滴灌亏缺灌溉模式研究[D]. 兰州:兰州理工大学,2022.
QI X Y. Study on regulation mode of tomato water / biogas slurry integrated indirect subsurface drip irrigation based on deficit regulation theory[D]. Lanzhou: Lanzhou University of Technology, 2022.
14
ULLAH H, SANTIAGO-ARENAS R, FERDOUS Z, et al. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review[J]. Advances in Agronomy, 2019,145(5):125-139.
15
丁 剑,田 园,张喜春. 番茄品系不同时期果实糖酸含量的变化[J]. 北京农学院学报201732(2): 29-33.
DING J, TIAN Y, ZHANG X C. Changes of sugar and acid contents in tomato fruits at different development stages[J]. Journal of Beijing University of Agriculture, 2017, 32(2): 29-33.
16
张平安. 生物炭配施沼液对番茄生理生态指标、产量品质及土壤环境的影响[D]. 兰州:兰州理工大学, 2021. ZHANG P A. Effects of biochar combined application of biogas slurry on tomato growth index, yield, quality and soil environment[D]. Lanzhou: Lanzhou University of Technology, 2021.
17
WANG F, KANG S, DU T, et al. Determination of comprehensive quality index for tomato and its response to different irrigation treatments[J]. Agricultural Water Management, 2011, 98(8): 1 228-1 238.
18
邢英英,张富仓,张 燕,等. 膜下滴灌水肥耦合促进番茄养分吸收及生长[J]. 农业工程学报201430(21): 70-80.
XING Y Y, ZHANG F C, ZHANG Y, et al. Irrigation and fertilization coupling of drip irrigation under plastic film promotes tomato's nutrient uptake and growth[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(21): 70-80.
19
WANG C, SHU L, ZHOU S, et al. Effects of alternate partial root-zone irrigation on the utilization and movement of nitrates in soil by tomato plants[J]. Scientia Horticulturae, 2019, 243: 41-47.
20
LI J, PAN T, WANG L, et al. Effects of water-fertilizer coupling on tomato photosynthesis, yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 82-90.
21
KUMAR S, MALAV L C, MALAV M K, et al. Biogas slurry: source of nutrients for eco-friendly agriculture[J]. International Journal of Extensive Research, 2015, 2(2): 42-46.
22
何世智,郑 健. 水/沼液一体化不同灌溉方式对番茄生长及产量品质的影响研究[J].中国农村水利水电,2022(1): 118-122, 129. HE S Z,ZHENG J. Effects of different water-biogas slurry integrate irrigation methods on the growth,yield and quality of tomato[J].China Rural Water and Hydropower, 2022, (1): 118-122, 129.
23
CHEN S, ZHOU Z, ANDERSEN M N, et al. Tomato yield and water use efficiency–coupling effects between growth stage specific soil water deficits[J]. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 2015, 65(5): 460-469.
24
NURUDDIN M M, MADRAMOOTOO C A, DODDS G T. Effects of water stress at different growth stages on greenhouse tomato yield and quality[J]. HortScience, 2003, 38(7): 1 389-1 393.
25
CHAND J B, HEWA G, HASSANLI A, et al. Deficit irrigation on tomato production in a greenhouse environment: A review[J]. Journal of Irrigation and Drainage Engineering, 2021, 147(2): 04020041.
26
DOS SANTOS M R, NEVES B R, SILVA B L DA, et al. Yield, water use efficiency and physiological characteristic of “Tommy Atkins” mango under partial rootzone drying irrigation system[J]. Journal of Water Resource and Protection, 2015, 7(13): 1 029.
27
XU C, TAO H, TIAN B, et al. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat[J]. Field Crops Research, 2016, 196: 268-275.
28
AGBNA G H D, DONGLI S, ZHIPENG L, et al. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato[J]. Scientia Horticulturae, 2017, 222: 90-101.
29
BOGALE A, NAGLE M, LATIF S, et al. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars[J]. Scientia Horticulturae, 2016, 213: 115-124.
30
COYAGO-CRUZ E, MELÉNDEZ-MARTÍNEZ A J, MORIANA A, et al. Yield response to regulated deficit irrigation of greenhouse cherry tomatoes[J]. Agricultural Water Management, 2019, 213: 212-221.
31
ERDEM Y, YUKSEL A N. Yield response of watermelon to irrigation shortage[J]. Scientia Horticulturae, 2003, 98(4): 365-383.
32
REN T, YU X, LIAO J, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation[J]. Soil Biology and Biochemistry, 2020, 146: 107 825.
33
张 智,李曼宁,杨 志,等. 基于多指标协同的草莓水肥耦合综合调控[J]. 农业机械学报202051(2): 267-276.
ZHANG Z, LI M N, YANG Z, et al. Comprehensive regulation of water and fertilizer coupling based on multi index collaboration of strawberry[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(2): 267-276.
34
LIU H, LI H, NING H, et al. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato[J]. Agricultural Water Management, 2019, 226: 105 787.
35
李建明,于雪梅,王雪威,等. 基于产量品质和水肥利用效率西瓜滴灌水肥制度优化[J]. 农业工程学报202036(9): 75-83.
LI J M, YU X M, WANG X W, et al. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality and fertilizer and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 75-83.
36
HE Z, LI M, CAI Z, et al. Optimal irrigation and fertilizer amounts based on multi-level fuzzy comprehensive evaluation of yield, growth and fruit quality on cherry tomato[J]. Agricultural Water Management, 2021, 243: 106 360.
37
LIU H, LI H, NING H, et al. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato[J]. Agricultural Water Management, 2019, 226: 105 787.
PDF(1048 KB)

246

访问

0

引用

详细情况

段落导航
相关文章

/