
变量灌水器独立双流道结构设计与优化研究
孙钰理, 刘旭飞, 杨福慧, 张林
变量灌水器独立双流道结构设计与优化研究
Research on Design and Optimization of Variable Emitter with Independent Double Channels
新疆灌溉农业通常在作物生长期采用低流量滴灌以提高水分利用效率,而后在休耕期采用沟灌洗盐来防止次生盐碱化。这个相对复杂的农业生产过程可能会增加新疆当地劳动力和资源过度投入。为此,通过3D打印技术开发了一种具有独立双重流道的新型变量灌水器,该灌水器在两个工作水压水平(6~10 m和12~15 m)下具有灌溉和洗盐功能。通过室内试验分析了变量灌水器基本水力性能(流量系数、流态指数),然后利用计算流体动力学(CFD)和通径分析相结合的方法,研究了变量灌水器水力性能对流道宽(w)、流道深(D)、流道长(L)、齿高(h)和齿底距(b)的响应。结果表明,随着工作水压从6 m增加至10 m,变量灌水器出流量从1.6 L/h缓慢地增加到2.1 L/h,当工作水压进一步增大至12 m时,变量灌水器出流量急剧达到4.5 L/h,增幅达114.3%,这说明通过调节工作水压,所设计的变量灌水器可原位实现灌溉功能(较小流量)和洗盐功能(较大流量)的自由切换。根据新疆当地农田实际灌溉定额和盐碱化程度,推荐了适宜的变量灌水器流道参数。例如,在轻度盐碱地中,变量灌水器适宜的w、D、h、L和b分别为0.60、0.60、0.80、8.80和0.60 mm。
The agricultural planting system in Xinjiang commonly employs the drip irrigation with low discharge during the growth period to improve the water use efficiency, and then applies furrow irrigation at fallow period to restrict the secondary salinization. However, this relatively complex process increases the input of labor and material resources. To address this, this study developed a new variable emitter with independent double channels by 3D printing technology. The emitter was designed to provide irrigation and salt-leaching capabilities under two different working water pressure levels (6~10 m and 12~15 m). The basic hydraulic performance of variable emitter was tested by laboratory experiments. Computational fluid dynamics (CFD) combine with path analysis were then used to investigate the effect of hydraulic performance of variable emitter response to the width (w), depth (D), length of flow channel (L), height (h) and distance of tooth (b). The results demonstrated that the discharge of the designed variable emitter smoothly increased from 1.61 L/hto 2.08 L/h with the development of working water pressure (6~10 m), and then sharply reach to 4.50 L/h at working water pressure by 12 m. This indicated that variable emitter could be used for both irrigation and salt-leaching under two water pressure levels. Considering the practical application requirements of related to irrigation quota and salinization degree in most farmland in Xinjiang, the suitable flow channel parameters of variable emitter were recommended. For instance, the appropriate values for w, D, h, L and b of variable emitter were 0.60 mm, 0.60 mm, 0.80 mm, 8.80 mm, and 0.6 mm for the utilization on slight saline-alkali farmland, respectively.
变量灌水器 / 独立双重流道 / 水力性能 / 盐分淋洗 / 洗盐 / 结构优化 / 数值模拟 {{custom_keyword}} /
variable emitter / independent double channels / hydraulic performance / salt washing / salt-leaching / structural optimization / numerical simulation {{custom_keyword}} /
表1 灌溉工况下不同计算模型的水力性能参数Kd 、xTab.1 Hydraulic performance parameters Kd, x for different calculation models under irrigation conditions |
模型 | Kd | ak /% | x | ax /% |
---|---|---|---|---|
实测值 | 7.31 | 0.50 | ||
Standard k-ε | 7.33 | 3.09 | 0.51 | 0.16 |
RNG k-ε | 8.19 | 6.93 | 0.52 | 0.32 |
Realizable k-ε | 7.81 | 6.10 | 0.51 | 0.29 |
表2 洗盐工况下不同计算模型的水力性能参数Kd 、xTab.2 Hydraulic performance parameters Kd, x for different calculation models under salt washing conditions |
模型 | Kd | ak /% | x | ax /% |
---|---|---|---|---|
实测值 | 34.87 | 0.51 | ||
Standard k-ε | 35.21 | 0.09 | 0.52 | 0.001 |
RNG k-ε | 38.75 | 0.24 | 0.52 | 0.003 |
Realizable k-ε | 36.59 | 0.19 | 0.50 | 0.003 |
表3 因素水平表Tab.3 Factor level table |
水平 | 流道宽w/mm | 流道深D/mm | 齿高h/mm | 流道长L/mm | 齿底距b/mm |
---|---|---|---|---|---|
1 | 0.50 | 0.48 | 0.40 | 8.80 | 0.30 |
2 | 0.60 | 0.60 | 0.50 | 13.20 | 0.45 |
3 | 0.70 | 0.72 | 0.60 | 15.00 | 0.60 |
4 | 0.80 | 0.84 | 0.70 | 17.60 | 0.75 |
5 | 0.90 | 0.96 | 0.80 | 22.00 | 0.90 |
表4 各因子与流道水力性能参数的简单相关系数Tab.4 Simple correlation coefficient between each factor and hydraulic performance parameters of flow channel |
因素 | w | D | h | L | b | x | Kd |
---|---|---|---|---|---|---|---|
w | 1.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.09 | 0.74** |
D | 1.00 | -0.02 | -0.02 | 0.00 | 0.08 | 0.27 | |
h | 1.00 | 0.05 | 0.00 | -0.05 | 0.20 | ||
L | 1.00 | 0.02 | -0.00 | -0.06 | |||
b | 1.00 | -0.54** | -0.36* |
表5 各因素对灌水器水力性能参数影响效应的通径分析Tab.5 Path analysis of the effects of various factors on the hydraulic performance parameters of emitters |
通径 | 流量系数Kd | 流态指数x | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
直接作用 bi | 间接作用 rijbj | 总作用 riy | 决策系数R(i) 2 | 直接作用 bi | 间接作用 rijbj | 总作用 riy | 决策系数 R(i) 2 | |||
w对y | 0.74** | D | 0.00 | 0.74 | 0.55 | 0.09 | D | 0.00 | 0.09 | 0.01 |
L | 0.00 | L | 0.00 | |||||||
h | 0.03 | h | 0.01 | |||||||
b | 0.00 | b | 0.00 | |||||||
D对y | 0.27 | w | 0.00 | 0.27 | 0.07 | 0.08 | w | 0.00 | 0.08 | 0.01 |
L | -0.01 | L | -0.00 | |||||||
h | -0.01 | h | -0.02 | |||||||
b | 0.00 | b | 0.00 | |||||||
L对y | 0.06 | w | 0.00 | -0.06 | -0.07 | 0.01 | w | 0.00 | -0.00 | 0.00 |
D | -0.01 | D | 0.00 | |||||||
h | 0.01 | h | 0.01 | |||||||
b | 0.00 | b | 0.00 | |||||||
h对y | 0.18 | w | 0.01 | 0.20 | 0.04 | 0.05 | w | 0.02 | -0.05 | -0.01 |
D | -0.01 | D | -0.01 | |||||||
L | 0.01 | L | 0.03 | |||||||
b | 0.00 | b | 0.00 | |||||||
b对y | 0.36* | w | 0.00 | -0.36 | -0.39 | 0.54** | w | 0.00 | -0.54 | -0.86 |
D | 0.00 | D | 0.00 | |||||||
L | 0.01 | L | 0.01 | |||||||
h | 0.00 | h | 0.00 |
图6 不同流道宽、齿底距的压力云图分布Fig.6 Pressure cloud diagram distribution of different flow channel width and tooth bottom distance |
表6 流道局部水头损失系数表Tab.6 local head loss coefficient table of flow channel |
序号 | 平均流速 v/(m·s-1) | ζt | ζ | 序号 | 平均流速 v/(m·s-1) | ζt | ζ |
---|---|---|---|---|---|---|---|
1 | 3.11 | 10.12 | 1.12 | 14 | 3.96 | 6.25 | 0.27 |
2 | 1.08 | 84.11 | 8.41 | 15 | 7.93 | 1.56 | 0.10 |
3 | 1.03 | 92.43 | 5.44 | 16 | 7.98 | 1.54 | 0.10 |
4 | 0.97 | 103.73 | 8.64 | 17 | 7.13 | 1.93 | 0.07 |
5 | 0.88 | 127.35 | 7.96 | 18 | 2.62 | 14.30 | 1.43 |
6 | 0.91 | 118.14 | 5.91 | 19 | 3.93 | 6.36 | 0.45 |
7 | 3.28 | 9.11 | 0.65 | 20 | 5.02 | 3.90 | 0.49 |
8 | 6.33 | 2.45 | 0.12 | 21 | 6.72 | 2.17 | 0.20 |
9 | 1.52 | 42.64 | 6.09 | 22 | 5.84 | 2.88 | 0.21 |
10 | 1.27 | 61.16 | 5.10 | 23 | 6.89 | 2.07 | 0.23 |
11 | 1.00 | 98.10 | 7.55 | 24 | 6.55 | 2.28 | 0.13 |
12 | 2.40 | 17.08 | 2.44 | 25 | 4.14 | 5.72 | 0.36 |
13 | 3.87 | 6.54 | 0.47 | 均值 | 3.85 | 32.96 | 2.56 |
表7 不同盐碱化程度土地推荐灌水器型号Tab.7 Recommended emitter models for different saline-alkali land |
盐碱化程度 | 灌水定额/(m3·hm-2) | 灌水器设计流量/(L·h-1) | 灌水器结构参数/mm | ||||
---|---|---|---|---|---|---|---|
流道宽w | 流道深D | 齿高h | 流道长L | 齿底距b | |||
轻度盐碱化 | 2 000~3 000 | 2.96~4.44 | 0.60 | 0.60 | 0.80 | 8.80 | 0.60 |
中度盐碱化 | 3 000~5 000 | 4.44~7.41 | 0.70 | 0.60 | 0.80 | 8.80 | 0.75 |
重度盐碱化 | 5 000~10 000 | 7.41~14.82 | 0.90 | 0.60 | 0.80 | 8.80 | 0.75 |
1 |
李勇, 李林, 王峰, 等. 我国北方盐碱地区冬春灌盐分淋洗研究进展[J]. 中国农村水利水电, 2022(11): 71-76, 82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
罗雪园, 周宏飞, 柴晨好, 等. 不同淋洗模式下干旱区盐渍土改良效果分析[J]. 水土保持学报, 2017, 31(2): 322-326.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
胡清阳. 滴灌方式和生育期洗盐定额对盐碱棉田土壤水盐运移及棉花生长的影响[D]. 陕西杨凌:西北农林科技大学, 2022. HU Q Y. Effects of different drip irrigation methods on soil water-salt transport and crop growth in salinized cotton field[D]. Yangling, Shaanxi: Northwest A&F University, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
衡通, 何新林, 杨丽莉, 等. 暗管与竖井排水工程改良新疆盐渍土的设计与效果评价[J]. 农业工程学报, 2022, 38(21): 111-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
杨丽萍, 任杰, 王宇, 等. 基于多源遥感数据的居延泽地区土壤盐分估算模型[J]. 农业机械学报, 2022, 53(11): 226-235.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16): 4 620-4 631.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
衡通, 王振华, 张金珠, 等. 新疆农田排水技术治理盐碱地的发展概况[J/OL]. 中国农业科技导报, 2019, 21(3): 161-169.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王小芳, 李毅, 姚宁, 等. 生物炭改良棉花-甜菜间作土壤理化性质与盐分效果分析[J]. 农业机械学报, 2022, 53(4): 352-362.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
朱生堡, 托尔逊乌尔古丽, 唐光木, 等. 新疆盐碱地变化及其治理措施研究进展[J]. 山东农业科学, 2023, 55(3): 158-165.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王兴鹏. 冬春灌对南疆土壤水盐动态和棉花生长的影响研究[D]. 北京:中国农业科学院, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
牛夏, 张彩霞, 张芮. 滴灌系统灌水器结构优化与抗堵性能提升研究进展[J]. 甘肃水利水电技术, 2021, 57(6): 26-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
王金丽. 滴灌技术的特点及应用[J]. 农业科技与装备, 2012(1): 62-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
党亚平, 纪学伟. 一种双流道滴灌带[P]. 中国专利:201920845536.1.2020. DANG Y P, JI X W. A double-channel drip irrigation belt[P]. China patent: 201920845536.1. 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李良, 李志刚. 圆柱体锯齿形迷宫式双流道灌水器:201210297502.6[P]. 2012-12-05.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
陈雪, 吴普特, 范兴科, 等. 灌水器迷宫流道结构参数数值模拟与抗堵塞分析[J]. 灌溉排水学报, 2008(2): 35-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
武鹏, 牛文全, 常莹华, 等. 齿形迷宫流道不同结构参数下灌水器抗堵塞性能研究[J]. 节水灌溉, 2010(5): 1-4, 8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张丽娟, 李双营. 滴灌齿型迷宫流道灌水器水力性能数值试验研究[J]. 水电能源科学, 2017, 35(8): 103-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 塑料节水灌溉器材第2部分:压力补偿式滴头及滴灌管: GB/T 19812.2-2017 [S]. 北京:中国标准出版社,2017. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China,China National Standardization Management Committee. Plastic equipment for water saving irrigation—Part2: Pressure compensating emitter and emitting pipe: GB/T 19812.2-2017 [S]. Beijing: China Standards Press, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 农业灌溉设备 滴头和滴灌管技术规范和试验方法: GB/T 17187-2009 [S]. 北京:中国标准出版社,2010. General Administration of Quality Supervision, Inspection and Quarantine of the People 's Republic of China,China National Standardization Management Committee. Agricultural irrigation equipment—Emitters and emitting pipe—Specification and test methods: GB/T 17187-2009 [S]. Beijing: China Standards Press, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
田济扬, 白丹, 于福亮, 等. 基于Fluent软件的滴灌双向流流道灌水器水力性能数值模拟[J]. 农业工程学报, 2014, 30(20): 65-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
唐学林, 赵旭红, 李云开, 等. 迷宫流道滴头内流场和颗粒运动的不同湍流模型数值模拟[J]. 农业工程学报, 2018, 34(16): 120-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
潘雅阁. 齿形流道结构对滴头水力性能影响的试验研究[D]. 陕西杨凌:西北农林科技大学, 2017. PAN Y G. Experimental study on the effect of tooth flow structure on the hydraulic performance of emitter drip [D]. Yangling, Shaanxi: Northwest A&F University, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
杨彬, 张赓, 王建东, 等. 齿型迷宫流道灌水器水力性能数值模拟研究[J]. 灌溉排水学报, 2019, 38(4): 71-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
牛文全, 喻黎明, 吴普特, 等. 迷宫流道转角对灌水器抗堵塞性能的影响[J]. 农业机械学报, 2009, 40(9): 51-55, 67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
喻黎明, 吴普特, 牛文全, 等.迷宫流道转角对灌水器水力性能的影响[J]. 农业机械学报, 2009, 40(2): 63-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
李文娟, 吐马尔白虎胆, 杨鹏年, 等. 不同春灌水量对不同盐度棉田盐分运移规律影响研究[J]. 节水灌溉, 2014(4): 7-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
郭霖, 白丹, 王新端, 等. 双向对冲流灌水器水力性能和消能机理模拟与验证[J]. 农业工程学报, 2017, 33(14): 100-107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
杜少卿, 曾文杰, 施泽, 等. 工作压力对滴灌管迷宫流道灌水器水力性能的影响[J]. 农业工程学报, 2011, 27(S2): 55-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
王新端. 滴灌双向流道灌水器抗堵性能及结构参数优化研究[D]. 西安:西安理工大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
王存才. 漩涡对迷宫灌水器水力性能的影响分析[D]. 太原:太原理工大学, 2022. WANG C C. Analysis of the influence of vortex on hydraulic performance of the labyrinth emitter[D/OL]. Taiyuan:Taiyuan University of Technology, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
田济扬, 白丹, 任长江, 等. 滴灌双向流流道灌水器水力特性分析[J]. 农业工程学报, 2013, 29(20): 89-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
郭霖, 白丹, 王新端, 等. 双向对冲流滴灌灌水器水力性能与消能效果[J]. 农业工程学报, 2016, 32(17): 77-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |