
基于数据融合的植被NPP时空变化及驱动因素分析
陈仔明, 岳春芳, 刘坤, 刘湘茹
基于数据融合的植被NPP时空变化及驱动因素分析
Spatio-temporal Changes and Driving Factors of Vegetation Net Primary Productivity Based on Data Fusion : A Case Study of Baicheng Basin
植被净初级生产力(NPP)是区域生态系统保护及生态环境治理的重要参考指标,针对拜城盆地植被NPP时空变化特征及其与气候变化的响应关系不明这一问题,利用STARFM时空数据融合模型,估算拜城盆地30 m空间分辨率的植被NPP,同时使用Sen斜率估计及M-K检验,分析植被NPP的时空变化趋势特征,并通过偏相关系数法量化气候要素的影响程度。结果显示:时间上,研究区2000-2020年植被NPP均值为152.1 g/(m2•a),总体呈不显著下降趋势;空间上,植被NPP值表现为南北高,中部河谷区域低,其中69.03%的区域呈不显著变化,11.44%呈显著增加趋势,19.53%呈显著减小趋势;研究区植被NPP变化与降雨总量、太阳辐射总量呈正相关,与平均气温呈现负相关关系,其中,太阳辐射是影响植被NPP变化的主导因素。研究结果表明:改进的CASA模型对于模拟研究区植被净初级生产力具有较好的适用性,有助于更好地揭示拜城盆地NPP的变化特征及驱动因素,并为估算与定期监测中小尺度区域的NPP提供了新方法。
Net primary productivity (NPP) of vegetation is an important reference index for regional ecosystem protection and ecological environment governance. Aiming at the problem that the spatial and temporal variation characteristics of vegetation NPP and its response to climate change in Baicheng Basin are unknown, this study used the STARFM spatial and temporal data fusion model to estimate the vegetation NPP of 30 m spatial resolution in Baicheng Basin.At the same time, Sen slope estimation and M-K test were used to analyze the spatial and temporal variation characteristics of vegetation NPP, and the influence degree of climate factors was quantified by partial correlation coefficient method. The results showed that: Temporally, the average NPP of vegetation in the study area from 2000 to 2020 was 152.1 g C•m-2•a-1, showing an insignificant downward trend. Spatially, the NPP value of vegetation is high in the northern and southern regions, and low in the central valley. Out of the total area, 69.03 % of the areas showed no significant change, 11.44 % showed a significant increase trend, and 19.53 % showed a significant decrease trend. The change of vegetation NPP in the study area exhibited a positive correlation with total rainfall and total solar radiation, while they displayed a negative correlation with average temperature. Among these factors, solar radiation was the dominant factor affecting the change of vegetation NPP. The results show that the improved CASA model has good applicability to simulate the net primary productivity of vegetation in the study area, which is helpful to better reveal the variation characteristics and driving factors of NPP in Baicheng Basin, offering a new method for estimating and regularly monitoring NPP in small and medium-sized areas.
改进的CASA模型 / 植被净初级生产力 / 时空数据融合模型 / 时空变化 / 驱动因素 {{custom_keyword}} /
improved CASA model / net primary productivity of vegetation / spatio-temporal data fusion model / temporal and spatial changes / driving factors {{custom_keyword}} /
表1 Mann-Kendall 趋势检验显著性判断Tab.1 Mann-Kendall trend test significance judgment table |
| Z | 趋势特征 |
---|---|---|
| 2.58<Z | 极显著增加 |
1.96<Z≤2.58 | 显著增加 | |
Z≤1.96 | 无显著变化 | |
| 无显著变化 | |
| Z≤1.96 | 无显著变化 |
1.96<Z≤2.58 | 显著减少 | |
2.58<Z | 极显著减少 |
1 |
李霞,张国壮,陈永昊,等. 农牧交错带辽河流域 2010-2019 年植被覆盖变化及驱动因素分析[J]. 农业工程学报,2022,38(22): 63-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
栗忠飞,王小莲,徐钰涛,等. 1996-2015年滇西北香格里拉植被净初级生产力变化[J]. 生态学报,2022,42(1): 266-276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
陈玉森,艾柯代·艾斯凯尔,王永东,等. 1994-2018年哈萨克斯坦首都圈植被NPP时空变化特征及驱动因素[J]. 干旱区研究, 2022,39(6): 1 917-1 929.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王茜,查元源. 华北平原农田生态系统的Noah-MP模型参数敏感性分析[J]. 节水灌溉,2023(10): 1-10, 17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李俊豪,梁娟珠. 基于CASA模型长江流域植被NPP时空演变及与地形因子的关系[J]. 贵州大学学报(自然科学版), 2023,40(3):30-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007(3):413-424.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
李传华,曹红娟,范也平,等.基于校正的CASA模型NPP遥感估算及分析:以河西走廊为例[J].生态学报,2019,39(5):1 616-1 626.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
张鑫彤,吴秀芹.基于CASA模型的2005-2019年云南断陷盆地NPP时空变化研究[J].地球学报,2021,42(3):426-434.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
董丹,倪健.利用CASA模型模拟西南喀斯特植被净第一性生产力[J].生态学报,2011,31(7): 1 855-1 866.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
朱玉果, 杜灵通, 谢应忠, 等. 2000-2015 年宁夏草地净初级生产力时空特征及其气候响应[J]. 生态学报, 2019, 39(2): 518-529.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
杨晗, 周伟, 石佩琪, 等. 内蒙古草地NPP时空变化格局及其与水热因子耦合关系[J]. 水土保持研究, 2019, 26(2): 234-240.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001(5):603-608, 644.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
陈宸,许玉凤.天山北坡经济带稳定草地净初级生产力时空变化特征及其驱动力[J].草业科学,2023,40(5):1 154-1 167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
陈春波,李刚勇,彭建.近20 a新疆天然草地NPP时空分析[J].干旱区地理,2022,45(2):522-534.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
任恬柱,盛建东,轩俊伟,等.北疆草地近10年净初级生产力时空变化分析[J].新疆农业大学学报,2020,43(6):414-421.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
赵鹏,陈桃,王茜,等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J].中国科学院大学学报,2020,37(1):51-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
杨红飞,刚成诚,穆少杰,等. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究[J].草业学报,2014,23(3):39-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
陈舒婷,郭兵,杨飞,等. 2000-2015年青藏高原植被NPP时空变化格局及其对气候变化的响应[J].自然资源学报,2020,35(10):2 511-2 527.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
尹小君,祝宏辉,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
乔鹏,孙从建,李亚新,等. 典型“高山-绿洲-荒漠”生态区植被净初级生产力时空变化特征分析[J].光谱学与光谱分析,2022,42(8): 2 595-2 602.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
贺玉麟,姚宜斌,张豹.GRACE反演格陵兰冰盖质量变化的不确定性分析与数据融合[J].测绘地理信息,2023,48(3):25-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
匡中正,涂超,李江沙,等.基于多源数据融合的城市雨污排水WebGIS系统及应用[J].测绘地理信息,2023,48(6):138-141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
张亚军,李大成.基于Landsat8与MODIS的亮温融合-反演策略[J]. 测绘科学,2020,45(4):71-80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王正伟,王宏卫,杨胜天,等. 基于生态系统服务功能的新疆绿洲生态安全格局识别及优化策略: 以拜城县为例[J]. 生态学报,2022,42(1):91-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
甘伟, 孙晓雷, 周艳飞,等. 基于RS和GIS的拜城县土壤侵蚀动态监测与分析[J]. 环境工程,2015,33增1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
黄端,闫慧敏,池泓,等. 2000-2015年江汉平原农田生态系统NPP时空变化特征[J]. 自然资源学报,2020,35(4):845-856.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
曾兴兰,陈田田. 西南地区植被动态变化的驱动力解析[J/OL]. 中国环境科学:1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
刘凤,曾永年.2000-2015年青海高原植被碳源/汇时空格局及变化[J].生态学报,2021,41(14): 5 792-5 803. LIU F, ZENG Y N. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Pleteau from 2000-2015[J]. Acta Ecologica Sincia, 2021,41(14): 5 792-5 803.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
吴珊珊,姚治君,姜丽光,等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应[J].自然资源学报,2016,31(1): 39-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
朱文泉,陈云浩,徐丹,等. 陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005(3):296-300.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
陈宸,井长青,赵苇康,等. 新疆草地质量对气候变化的响应及其变化趋势[J]. 草业学报,2022,31(12):1-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
徐雪,罗娅,杨胜天,等. 全球不同气候带陆地植被净初级生产力变化趋势与可持续性[J].生态学报,2023,43(9): 3 729-3 743.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
李苗,郑国保,朱金霞.不同生育期水分胁迫对干旱区枸杞果实生长产量和水分利用效率的影响[J].节水灌溉,2020(10):20-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
任丽雯,王兴涛,刘明春,等. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023,40(5): 818-828.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
吴宏玥,杜灵通,乔成龙,等. 基于蒸散演变驱动的宁夏绿洲平原生态系统耗水变化[J]. 水土保持学报,2023,37(3): 172-180, 189.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |