
宁夏衬砌渠道渠基冻胀率水热响应试验研究
王羽岱, 王斌, 苗福生, 马楠
宁夏衬砌渠道渠基冻胀率水热响应试验研究
Experimental Study on Hydrothermal Response of Frost Swelling Rate of Canal Foundation in Ningxia
衬砌渠道周围的水分与温度场分布存在明显差异,此范围内渠基土在水热两场耦合作用下冻胀有明显不同。基于这种差异,开展渠基土在不同水分、温度条件下冻胀率试验研究。结果表明:在不同温度条件下,土体冻胀率随温度的变化过程可分为2个阶段,当温度从0 ℃降至-5 ℃左右时,在此阶段产生的冻胀率约占整个冻胀过程的50%~80%,冻胀率与温度线性关系明显。随着温度继续降低,2者非线性关系明显。在无补水情况下,相同温度条件下的土体,初始含水率越大,所产生的冻胀率越大;初始含水率25%和35%的土体产生的冻胀率均为初始含水率15%土体的1倍到2倍以上。当土体在冻胀过程中有水分补充时,其冻胀率与水分变化线性关系明显,初始含水率越大的土体产生的冻胀率增量越大,初始含水率25%、35%的土体冻胀率增量均为15%土体的2倍以上。提出的水热耦合条件与渠基土冻胀率的多元非线性关系与试验数据吻合较好。建立数值模拟模型,对衬砌渠道不同位置处冻胀作用分布与变形进行计算与分析,结果表明:温度越低、水分越大,衬砌渠道所受到的切向冻胀力与法向冻胀力越大。水热变化差异越大时,土体冻胀导致的衬砌渠道冻胀变形越显著。
There are distinct variations in the distribution of moisture and temperature fields around the lined channel, and the freezing and expansion rates of the channel base soil in this range under the coupling of water and heat fields are obviously different. To investigate these differences, experimental studies on the freezing and expansion rate of the soil in different moisture and temperature conditions were carried out. The results show that: Under different sub-zero temperature conditions, the freezing expansion rate of the specimens exhibits a two-stage change process. When the temperature is reduced from 0℃ to -5℃ or so, in this stage of the freezing expansion rate accounts for about 50% to 80% of the whole freezing expansion process, showing a clear linear relationship with temperature. In the second stage, as the temperature continues to decrease, the nonlinear relationship between the two is obvious.Under the condition of no water supplement and same sub-zero temperature conditions, specimens with higher initial moisture content exhibit greater rates of freezing expansion. Initial moisture content of 25% and 35% of the specimen produced frost expansion rate is about double to more than twice the initial moisture content of 15% specimen. When the specimen is replenished with water during the freezing process, the linear relationship between the freezing expansion rate and the moisture change is evident. The larger the initial moisture content of the specimen produces a larger increment of the freezing expansion rate, the initial moisture content of 25%, 35% of the specimen freezing expansion rate increment is more than twice as much as the 15% of the specimen.The multivariate nonlinear relationship between hydrothermal coupling conditions and the freezing and expansion rate of canal subsoil was proposed, and it was in good agreement with the experimental data. A numerical simulation model was established to calculate and analyze the distribution and deformation of frost heave in different positions of lining channels. The results show that lower temperatures and higher moisture levels result in greater tangential and normal frost heave forces. And the greater the difference between water and heat, the more significant the frost heave deformation of lining channels caused by soil frost heave.
衬砌渠道 / 渠基土 / 温度 / 含水率 / 水热耦合 / 冻胀率 {{custom_keyword}} /
lined channel / channel base soil / temperature / moisture content / coupling of water and heat fields / freezing and expansion rate {{custom_keyword}} /
表1 渠基土的基本物理性质指标Tab.1 Indicators of basic physical properties of drainage soils |
天然密度/(g·cm-3) | 塑限ωp /% | 液限ωL /% | 塑性指数Ip | 0~30 cm土体天然含水率/% | 30~60 cm土体天然含水率/% | 60~90 cm土体天然含水率/% |
---|---|---|---|---|---|---|
1.63 | 13.50 | 35.30 | 21.80 | 6.40 | 8.70 | 9.50 |
表2 试件编号与试验条件对照Tab.2 Comparison table between specimen number and test conditions |
试件编号 | 含水率/% | 温度条件/℃ | 试件中补水终值/% |
---|---|---|---|
A1510 | 15 | -10 | +8.30 |
A1520 | -20 | +9.20 | |
A1530 | -30 | +9.20 | |
A2510 | 25 | -10 | +8.90 |
A2520 | -20 | +8.90 | |
A2530 | -30 | +7.80 | |
A3510 | 35 | -10 | +8.80 |
A3520 | -20 | +8.80 | |
A3530 | -30 | +8.10 |
图2 土体在不同温度条件下冻胀率(初始含水率15%)Fig.2 Freeze-up rate of soil at different temperatures (15% initial moisture content) |
表3 水分和温度对土体冻胀率影响显著性分析Tab.3 Significance analysis of the effect of moisture and temperature on the rate of frost heave of soils |
因素 | 平方和 | 均方 | P | 显著性 |
---|---|---|---|---|
含水率 | 5.369 | 0.013 | <0.001 2 | ### |
温度 | 0.026 | 2.685 | 0.001 0 | ## |
1 |
赵国胜, 阮锦超, 赵晓斌. 宁夏地区的渠道衬砌[J]. 宁夏工程技术, 2004, 3(2): 194-195.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
刘学军, 刘平, 蒋正文. 宁夏扬黄灌区土壤盐渍化防治对策[J]. 宁夏农林科技, 2018, 59(9): 54-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王正中, 江浩源, 王羿, 等. 旱寒区输水渠道防渗抗冻胀研究进展与前沿[J]. 农业工程学报, 2020, 36(22): 120-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王羿, 王正中, 刘铨鸿, 等. 寒区输水渠道衬砌与冻土相互作用的冻胀破坏试验研究[J]. 岩土工程学报, 2018, 40(10): 1 799-1 808.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王玉宝, 吴浩兴, 刘荣, 等. 整体式U型混凝土渠道衬砌-冻土接触模型[J]. 农业工程学报, 2023, 39(9): 142-151.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
龚嘉玮, 王正中, 江浩源, 等. 基于广义Winkler弹性地基梁理论的梯形渠道冻胀力学模型[J]. 冰川冻土, 2022, 44(5): 1 593-1 605.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
肖旻, 王正中, 刘铨鸿, 等. 考虑冻土与结构相互作用的梯形渠道冻胀破坏弹性地基梁模型[J]. 水利学报, 2017, 48(10): 1 229-1 239.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
胡坤, 周国庆, 李晓俊, 等. 不同约束条件下土体冻胀规律[J]. 煤炭学报, 2011, 36(10): 1 653-1 658.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
薛珂, 温智, 张明礼, 等. 土体冻结过程中基质势与水分迁移及冻胀的关系[J]. 农业工程学报, 2017, 33(10): 176-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
杨涛, 喻天龙, 姜海波. 北疆膨胀土渠道混凝土衬砌结构变形特性研究[J]. 水电能源科学, 2023, 41(2): 163-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
郝小云, 冯文杰, 马巍, 等. 补水压力对土体冻胀的影响[J]. 冰川冻土, 2022, 44(2): 708-716.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
王思文, 姜国辉, 李玉清, 等. 不同系统单向冻结条件下土体冻胀率与冻结速率分析[J]. 水电能源科学, 2021, 39(10): 164-167.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
巩丽丽, 刘德仁, 杨楠, 等. 季节性冻土区路基土体冻胀影响因素灰色关联分析[J]. 水利水运工程学报, 2019, 41(1): 28-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
薛塞光. 宁夏寒冷地区骨干渠道砌护技术研究[J]. 人民黄河, 2012, 34(1): 96-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
唐益群, 洪军, 杨坪, 等. 人工冻结作用下淤泥质黏土冻胀特性试验研究[J]. 岩土工程学报, 2009, 31(5): 772-776.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
陈肖柏, 刘建坤, 刘鸿绪. 土的冻结作用与地基[M]. 北京: 科学出版社, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王正中, 沙际德, 蒋允静, 等. 正交各向异性冻土与建筑物相互作用的非线性有限元分析[J]. 土木工程学报, 1999(3): 55-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
刘旭东, 王正中, 陈立杰. 渠道冻胀敏感性数值模拟分析[J]. 节水灌溉, 2010(5): 18-21, 27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
李卓,范光亚,刘斯宏,等.土工袋防渠道冻胀水-热-力耦合数值模拟[J].河海大学学报(自然科学版), 2018, 46(5): 408-417.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
中华人民共和国水利部. 渠系工程抗冻胀设计规范:SL23-2006 [S]. 北京: 中国水利水电出版社, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
李宗利, 姚希望, 张锐, 等. 考虑基土不均匀冻胀的梯形渠道混凝土衬砌弹性地基梁力学模型[J]. 农业工程学报, 2020, 36(21): 114-121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
黄龙, 盛煜, 胡晓莹, 等. 基于弹性地基梁理论的冻胀作用下管道应力分析[J]. 冰川冻土, 2018, 40(1): 70-78
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
李宗利, 姚希望, 杨乐, 等. 基于弹性地基梁理论的梯形渠道混凝土衬砌冻胀力学模型[J]. 农业工程学报, 2019, 35(15): 110-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
郭继武. 地基基础设计简明手册[M]. 北京: 机械工业出版社, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
张国军,陆立国. 影响衬砌渠道冻胀破坏严重的关键因素[J]. 中国农村水利水电,2012(9):105-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
王丽丹. 浅谈宁夏平罗县农业灌溉用水情况[J]. 建筑工程技术与设计, 2018, 6(29): 2 455-2 455. WANG L D. An overview of agricultural irrigation water use in Pingluo County, Ningxia[J]. Construction Engineering Technology and Design, 2018, 6(29): 2 455-2 455.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
王斌. U形渠道衬砌防冻机理与数值模拟研究[D]. 银川:宁夏大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
郭富强, 李钢铁, 霍轶珍, 等. 基于ADINA的河套灌区预制混凝土渠道保温防冻胀效果数值模拟[J]. 干旱区资源与环境, 2023, 37(10): 84-92.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |