不同粒径黄土对砷和汞的吸附特性研究

谭博文, 时红, 陈军锋, 张永波

PDF(2248 KB)
节水灌溉 ›› 2025 ›› (3) : 36-42. DOI: 10.12396/jsgg.2024196
农业水土资源与生态环境

不同粒径黄土对砷和汞的吸附特性研究

作者信息 +

Study on the Adsorption Characteristics of Arsenic and Mercury on Loess with Different Particle Sizes

Author information +
稿件信息 +

摘要

为了探究不同粒径黄土对重金属As(Ⅴ)、Hg(Ⅱ)的吸附特性,以5种粒径的黄土为研究对象,研究反应时间、重金属浓度、固液比、pH等因素对As(Ⅴ)和Hg(Ⅱ)在5种粒径黄土上吸附特性的影响。结果表明,黄土对As(Ⅴ)和Hg(Ⅱ)的吸附分别于480、60 min饱和,吸附动力学过程最符合准二级动力学模型,吸附过程主要由化学吸附控制,粒径越小的黄土吸附效果越好。Langmiur模型、Freundlich模型和D-R模型均能较好地解释黄土对As(Ⅴ)、Hg(Ⅱ)的等温吸附,Langmiur模型计算出黄土对As(Ⅴ)和Hg(Ⅱ)的最大吸附量分别为0.360、1.096 mg/g,D-R模型计算结果显示,5种黄土吸附As(Ⅴ)和Hg(Ⅱ)的平均吸附自由能介于8.01~10.11 kJ/mol和7.55~11.17 kJ/mol,吸附以离子交换为主。适当增加固液比能明显增加黄土的吸附效率,对As(Ⅴ)和Hg(Ⅱ)的去除率最高可达81.9%、93.6%。酸性条件(pH=3~7)更有利于As(Ⅴ)的吸附,Hg(Ⅱ)的吸附量在pH=5左右达到最大值。

Abstract

In order to investigate the adsorption characteristics of heavy metals As(V) and Hg(II) on loess with different particle sizes, this paper takes five different particle sizes of loess as the research object, and studies the effects of reaction time, heavy metal concentration, solid-liquid ratio, pH and other factors on the adsorption characteristics of As(V) and Hg(II) on five different particle sizes of loess. The results showed that the adsorption of As(V) and Hg(II) by loess reached saturation at 480 min and 60 min. The adsorption kinetics process was most consistent with the quasi-second-order kinetic model, and the adsorption process was mainly controlled by chemical adsorption. The smaller the particle size of loess, the better the adsorption effect. The Langmuir model, Freundlich model, and D-R model can all explain the isothermal adsorption of As(V) and Hg(II) by loess well. The Langmiur model calculated that the maximum adsorption capacity of loess for As(V) and Hg(II) was 0.360 and 1.096 mg/g. The calculation results of the D-R model show that the average adsorption free energy of the five types of loess for As(V) and Hg(II) adsorption ranges from 8.01 to 10.11kJ/mol and 7.55~11.17 kJ/mol, and the adsorption mechanism is primarily ion exchange. Appropriately increasing the solid-liquid ratio can significantly increase the adsorption efficiency of loess, with removal rates of As(V) and Hg(II) reaching up to 81.9% and 93.6%. Acidic conditions(pH=3~7) are more favorable for the adsorption of As(V), and the adsorption capacity of Hg(II) reaches the highest value at pH=5.

关键词

黄土 / 粒径 / / / 吸附

Key words

loess / particle size / arsenic / mercury / adsorption

基金

山西省应用基础研究计划项目(20210302123192)

引用本文

导出引用
谭博文 , 时红 , 陈军锋 , 张永波. 不同粒径黄土对砷和汞的吸附特性研究[J].节水灌溉, 2025(3): 36-42 https://doi.org/10.12396/jsgg.2024196
TAN Bo-wen , SHI Hong , CHEN Jun-feng , ZHANG Yong-bo. Study on the Adsorption Characteristics of Arsenic and Mercury on Loess with Different Particle Sizes[J].Water Saving Irrigation, 2025(3): 36-42 https://doi.org/10.12396/jsgg.2024196

参考文献

1
陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017,36(9):1 689-1 692.
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017,36(9):1 689-1 692.
2
张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014,35(2):692-703.
ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China[J]. Environmental Science, 2014,35(2):692-703.
3
周建军, 周 桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊, 2014,29(3):315-320+350+272.
ZHOU J J, ZHOU J, FENG R G. Status of China’s heavy metal contamination in soil and its remediation strategy[J]. Bulletin of Chinese Academy of Sciences, 2014,29(3):315-320+350+272.
4
XU D, WANG Z J, TAN X Y, et al. Integrated assessment of the pollution and risk of heavy metals in soils near chemical industry parks along the middle Yangtze River[J]. Science of the Total Environment, 2024,917:170 431.
5
章海波, 骆永明, 李 远, 等. 中国土壤环境质量标准中重金属指标的筛选研究[J]. 土壤学报, 2014,51(3):429-438.
ZHANG H B, LUO Y M, LI Y, et al. Screening of criteria for heavy metals for revision of the national standard for soil environmental quality of China[J]. Acta Pedologica Sinica, 2014,51(3):429-438.
6
SHERLALA A I A, RAMAN A A A, BELLO M M, et al. Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite[J]. Journal of Environmental Management, 2019,246:547-556.
7
潘茂华, 朱志良. 自然环境中砷的迁移转化研究进展[J]. 化学通报, 2013, 76(5): 399-404.
PAN M H, ZHU Z L. Progress of investigations on transformation and distribution of arsenic in natural environment[J]. Chemistry, 2013,76(5):399-404.
8
朱司航, 赵晶晶, 尹英杰, 等. 针铁矿改性生物炭对砷吸附性能[J]. 环境科学, 2019,40(6):2 773-2 782.
ZHU S H, ZHAO J J, YIN Y J, et al. Application of goethite modified biochar for arsenic removal from aqueous solution[J]. Environmental Science, 2019,40(6):2 773-2 782.
9
周 强, 段钰锋, 冒咏秋, 等. 活性炭汞吸附动力学及吸附机制研究[J]. 中国电机工程学报, 2013,33(29):10-17+2.
ZHOU Q, DUAN Y F, MAO Y Q, et al. Kinetics and mechanism of activated carbon adsorption for mercury removal[J]. Proceedings of the CSEE, 2013,33(29):10-17+2.
10
WANG L W, HOU D Y, CAO Y N, et al. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies[J]. Environment International, 2020,134:105 281.
11
曾辉平, 吕赛赛, 杨 航, 等. 铁锰泥除砷颗粒吸附剂对As(Ⅴ)的吸附去除[J]. 环境科学, 2018,39(1):170-178.
ZENG H P, S S, YANG H, et al. Arsenic(Ⅴ) removal by granular adsorbents made from backwashing residuals from biofilters for iron and manganese removal[J]. Environmental Science, 2018,39(1):170-178.
12
LI Y L, YU H, LIU L N, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021,420:126 655.
13
唐晓武, 刘晶晶, 王 艳. 黄土对Cr(Ⅲ)的吸附特性及机理研究[J]. 岩土力学, 2013,34(8):2 136-2 142.
TANG X W, LIU J J, WANG Y. Adsorption behavior and mechanism of loess soil towards chromium ion[J]. Rock and Soil Mechanics, 2013,34(8):2 136-2 142.
14
陈云敏, 王誉泽, 谢海建, 等. 黄土–粉土混合土对Pb(Ⅱ)的静平衡和动态吸附特性[J]. 岩土工程学报, 2014,36(7):1 185-1 194.
CHEN Y M, WANG Y Z, XIE H J, et al. Adsorption characteristics of loess-modified natural silt towards Pb(II): Equilibrium and kinetic tests[J]. Chinese Journal of Geotechnical Engineering, 2014,36(7):1 185-1 194.
15
卢仪思, 刘晓凤, 谢明星, 等. 赤泥-黄土协同净化含Cd(Ⅱ)酸性矿井废水[J]. 科学技术与工程, 2023, 23(7): 3 091-3 097.
LU Y S, LIU X F, XIE M X, et al. Synergistic purification of acid mine drainage containing Cd(Ⅱ) by red mud and loess[J]. Science Technology and Engineering, 2023,23(7):3 091-3 097.
16
周 悦, 马 贵, 廖彩云, 等. PE微塑料对土壤吸附镉的影响及机理研究[J]. 环境科学与技术, 2023,46(11):123-129.
ZHOU Y, MA G, LIAO C Y, et al. Study on the effect and mechanism of PE microplastics on cadmium adsorption in soil[J]. Environmental Science & Technology, 2023,46(11):123-129.
17
桂晓雨, 李 炎, 李宇轩, 等. 酸处理不同粒径土壤组分对菲的吸附研究[J]. 环境污染与防治, 2023,45(8):1 114-1 118+1 125.
GUI X Y, LI Y, LI Y X, et al. Adsorption of phenanthrene by acid treated soil components with different particle sizes[J]. Environmental Pollution & Control, 2023,45(8):1 114-1 118+1 125.
18
李东风, 郑文杰, 文少杰, 等. 改性黄土材料对Pb(Ⅱ)的吸附阻滞特性实验和内在机理探究[J]. 环境工程, 2023,41(S2):1 268-1 275+11.
LI D F, ZHENG W J, WEN S J, et al. Experimental study on Pb(ⅱ)adsorption retardation and internal mechanism of modified loess[J]. Environmental Engineering, 2023, 41(S2):1 268-1 275+11.
19
李坤权, 郑 正, 罗兴章, 等. KOH活化微孔活性炭对对硝基苯胺的吸附动力学[J]. 中国环境科学, 2010,30(2):174-179.
LI K Q, ZHENG Z, LUO X Z, et al. Adsorption kinetics of p-nitroaniline onto microporous carbon activation with KOH[J]. China Environmental Science, 2010, 30(2): 174-179.
20
HO Y S, MCKAY G. Kinetic models for the sorption of dye from aqueous solution by wood[J]. Process Safety and Environmental Protection, 1998,76(2):183-191.
21
CHEN Q, ZHENG J W, ZHENG L C, et al. Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations[J]. Chemical Engineering Journal, 2018,350:1 000-1 009.
22
戴志楠, 温尔刚, 陈翰博, 等. 施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响[J]. 浙江农林大学学报, 2021,38(2):346-354.
DAI Z N, WEN E G, CHEN H B, et al. Effect of raw and iron-modified biochar on the sorption of As(Ⅴ) by soils[J]. Journal of Zhejiang A & F University, 2021,38(2):346-354.
23
李晗晟, 邓天天, 丁明慧, 等. 低分子有机酸对砷在水土环境中吸附/解吸作用的影响[J]. 河南工程学院学报(自然科学版), 2020,32(4):19-25.
LI H S, DENG T T, DING M H, et al. Effects of low molecular organic acids on the adsorption and desorption of arsenic in soil and water environment[J]. Journal of Henan University of Engineering (Natural Science Edition), 2020,32(4):19-25.
24
李晓航, 刘红刚, 路建洲, 等. 煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制[J]. 化工学报, 2019,70(11):4 397-4 409.
LI X H, LIU H G, LU J Z, et al. Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler[J]. CIESC Journal, 2019,70(11):4 397-4 409.
25
王 艳, 唐晓武, 王恒宇, 等. 重金属Mn(Ⅱ)在黄土上的吸附和解吸特性研究[J]. 岩土工程学报, 2011,33(S1):376-380.
26
ZENG Z T, YE S J, WU H P, et al. Research on the sustainable efficacy of g-MoS2 decorated biochar nanocomposites for removing tetracycline hydrochloride from antibiotic-polluted aqueous solution[J]. Science of the Total Environment, 2019, 648: 206-217.
27
OCIŃSKI D, JACUKOWICZ-SOBALA I, MAZUR P, et al. Water treatment residuals containing iron and manganese oxides for arsenic removal from water–Characterization of physicochemical properties and adsorption studies[J]. Chemical Engineering Journal, 2016,294:210-221.
28
陈 静, 王学军, 朱立军. pH对砷在贵州红壤中的吸附的影响[J]. 土壤, 2004,36(2):211-214.
CHEN J, WANG X J, ZHU L J. Effect of ph on adsorption and transformation of arsenic in red soil in Guizhou[J]. Soils, 2004,36(2):211-214.
29
祝 惠, 阎百兴, 张丰松, 等. 粒级、pH和有机质对汞在松花江沉积物表面吸附-解吸的影响[J]. 环境科学, 2010,31(10):2 315-2 320.
ZHU H, YAN B X, ZHANG F S, et al. Effects of particle-sizes, pH and organic matter on adsorption and desorption of mercury to sediments in the Songhua River[J]. Environmental Science, 2010,31(10):2 315-2 320.
30
李英华, 孙丽娜. pH值和外加汞浓度对汞在棕土中的吸附-解吸动力学特征的影响[J]. 农业环境科学学报, 2008,27(2):579-582.
LI Y H, SUN L N. Impact of pH and mercury concentration on adsorption-desorption kinetic characteristics of mercury in umber[J]. Journal of Agro-Environment Science, 2008,27(2):579-582.
31
PARK J H, WANG J J, XIAO R, et al. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands[J]. Chemosphere, 2018,195:455-462.
32
王莉霞, 朱立禄, 阎百兴. pH和水溶性有机质对苏打盐碱土壤吸附解吸汞的影响[J]. 环境工程, 2014,32(5):160-164.
WANG L X, ZHU L L, YAN B X. Effect of pH and dissolved organic matters on absorption and desorption of Hg in alkanline-alkali soil[J]. Environmental Engineering, 2014,32(5):160-164.
33
窦韦强, 安 毅, 秦 莉, 等. 土壤pH对汞迁移转化的影响研究进展[J]. 农业资源与环境学报, 2019,36(1):1-8.
DOU W Q, AN Y, QIN L, et al. Research progress on effects of soil pH on migration and transformation of mercury[J]. Journal of Agricultural Resources and Environment, 2019,36(1):1-8.
34
YIN Y J, ALLEN H E, LI Y M, et al. Adsorption of mercury(II) by soil: Effects of pH, chloride, and organic matter[J]. Journal of Environmental Quality, 1996,25(4):837-844.
PDF(2248 KB)

62

访问

0

引用

详细情况

段落导航
相关文章

/