
银北灌区稻田回归水灌溉对土壤盐分分布及作物产量的影响
施超, 王洪德, 丁继辉, 李博, 孙枭沁, 彭大育, 佘冬立
银北灌区稻田回归水灌溉对土壤盐分分布及作物产量的影响
The Impact of Rice Field Reuse Water Irrigation on Soil Salinity Distribution and Crop Yield in Yinbei Irrigation District
银北灌区面临引黄水量锐减挑战的同时,也存在水资源利用效率低,灌溉用水不科学合理,水资源浪费严重等问题。寻求适宜的灌溉模式是减少黄河水依赖、提高水资源利用率以及保证作物产量的重要途径。采用大田试验种植水稻,设置6种不同的灌溉模式,分别为回归水漫灌(T1)、黄河水灌溉(T2)、适量回归水灌溉(T3)、黄河水回归水交替灌溉(T4)、退水再灌(T5)、常规灌溉(T6),研究不同灌溉模式对稻田土壤盐分分布和水稻生长及产量的影响。不同灌溉模式对稻田盐分分布影响显著。全生育期不同灌溉模式都存在表层土壤脱盐,底层土壤积盐的现象,T1处理脱盐深度最大,使盐分累积在土壤60 cm以下,其余处理累积在土壤40 cm以下。土壤脱盐率最大在T1处理,较初始土壤含盐量降低9.58%;根区脱盐率最大出现在T2处理,为27.36%;根区盐分变化量最大为T1处理,水稻生育期内,盐分向下迁移量为4.82 t/hm2。回归水漫灌处理下水稻产量最大,为10 029.42 kg/hm2。T3处理生产单位重量的水稻可节省黄河水0.56 m3/kg,生产一季水稻单位面积可节省黄河水5 003.41 m3/hm2。综上所述,针对宁夏银北灌区,采用适量的回归水进行灌溉,可以在保证作物产量的同时,降低对于引用黄河水灌溉的需求程度。
The Yin Bei Irrigation Area is facing a sharp decline in the amount of water diverted from the Yellow River, while also facing problems such as low water resource utilization efficiency, insufficient scientific and reasonable irrigation water use, and serious water resource waste. Seeking suitable irrigation modes is an important way to ensure crop yield, reduce water dependence on the Yellow River, and improve water resource utilization efficiency. Using field experiments to plant rice, six different irrigation modes were set up, namely return flood irrigation (T1), Yellow River water irrigation (T2), moderate return water irrigation (T3), Yellow River water return alternating irrigation (T4), return water irrigation (T5), and conventional irrigation (T6). The effects of different irrigation modes on soil water and salt distribution, rice growth, and yield in rice fields were studied. Different irrigation modes have a significant impact on the distribution of salt in paddy fields. The phenomenon of surface soil desalination and bottom soil salt accumulation exists in different irrigation modes throughout the entire growth period. T1 treatment has the highest desalination depth, causing salt accumulation below 60 cm of soil, while the rest of the treatments accumulate below 40 cm of soil. The maximum soil desalination rate was observed in T1 treatment, which decreased by 9.58% compared to the initial soil salinity; The highest root zone desalination rate occurred in T2 treatment, at 27.36%; The maximum change in salt content in the root zone was observed in T1 treatment, and during the rice growth period, the downward migration of salt was 4.82 t/hm2. The maximum rice yield was 10 029.42 kg/hm2 under the treatment of flood irrigation with return water. T3 processing can save 0.56 m3/kg of Yellow River water per unit weight of rice production, and producing one season of rice can save 5 003.41 m3/hm2 of Yellow River water per unit area. In summary, for the Yin Bei Irrigation Area in Ningxia, using an appropriate amount of return water for irrigation can ensure crop yield while reducing the demand for irrigation using Yellow River water.
回归水灌溉 / 土壤盐分分布 / 氢氧同位素 / 土壤盐分通量 / 水稻产量 / 灌溉模式 {{custom_keyword}} /
return water irrigation / soil salt distribution / hydrogen and oxygen isotopes / soil salt flux / rice yield / irrigation mode {{custom_keyword}} /
表1 试验区域土壤样本基本理化性质Tab. 1 Basic Physical and Chemical Properties of Soil Samples in the Experimental Area |
土层深度 | pH值 | 全盐量/(g•kg-1) | 八大离子量/(mg•kg-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | Cl- | SO4 2- | CO3 2- | HCO3 - | |||
0~40 cm土壤 | 8.25 | 3.12 | 330.42 | 20.02 | 73.62 | 197.44 | 236.82 | 1 791.22 | 0 | 9.07 |
40~100 cm土壤 | 8.44 | 1.99 | 416.61 | 17.05 | 60.14 | 108.27 | 222.04 | 1 159.93 | 0 | 9.21 |
表2 试验区域土壤样本容重及颗粒组成Tab.2 Soil sample bulk density and particle composition in the experimental area |
土层深度/cm | 容重/(g•cm-3) | 颗粒组成/% | 土壤质地 | ||
---|---|---|---|---|---|
砂粒 | 粉粒 | 黏粒 | |||
0~20 | 1.52 | 11.20 | 51.68 | 37.12 | 粉黏壤土 |
20~40 | 1.55 | 12.55 | 52.00 | 35.45 | |
40~60 | 1.47 | 8.17 | 51.60 | 40.23 | 粉黏土 |
60~80 | 1.52 | 7.38 | 51.40 | 41.22 | |
80~100 | 1.49 | 3.95 | 50.85 | 45.20 |
表3 试验区域灌溉用水样本理化性质Tab.3 Physical and chemical properties of irrigation water samples in the experimental area |
样本名称 | pH值 | 全盐量/(g•L-1) | 八大离子量/(mg•L-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | Cl- | SO4 2- | CO3 2- | HCO3 - | |||
回归水 | 7.75 | 1.26 | 249.84 | 15.10 | 72.09 | 11.53 | 259.01 | 334.89 | 16.01 | 201.77 |
黄河水 | 6.98 | 0.94 | 200.29 | 9.39 | 53.01 | 18.21 | 221.46 | 288.57 | 9.60 | 138.85 |
表4 各灌溉模式要点Tab.4 Key points of each irrigation mode |
处理编号 | 灌水方式 | 试验处理 | |
---|---|---|---|
分蘖期前 | 分蘖期后 | ||
T1 | 回归水漫灌 | 均采用当地经验灌溉(6月15日之前) | 采用回归水漫灌,每次灌溉约300 m3 |
T2 | 黄河水灌溉 | 采用黄河水灌溉,每次灌溉约200 m3 | |
T3 | 适量回归水灌溉 | 采用回归水灌溉,每次灌溉约200 m3 | |
T4 | 交替灌溉 | 采用黄河水、回归水、回归水的交替灌溉模式,每次灌溉约200 m3 | |
T5 | 退水再灌 | 灌溉黄河水后2~3 d排去田间50%的水量,补灌回归水至排水前水深,每次灌溉黄河水约200 m3 | |
T6 | 常规灌溉 | 根据上游供水情况,按当地群众灌水经验灌溉,每次灌溉约200 m3 |
图1 水稻各生育阶段不同灌溉处理灌水组成Fig.1 Different irrigation treatments at different growth stages of rice and their composition in irrigation water |
图5 不同灌溉模式盐分平衡图Fig.5 Salt balance figure for different irrigation modes |
表5 不同灌溉模式土壤盐分平衡结果 (t/hm2)Tab.5 Soil salt balance results under different irrigation modes |
处理 | 灌溉带入量 | 根区盐分变化量 | 60 cm以下盐分变化量 |
---|---|---|---|
T1 | 15.67 | -4.82 | 28.13 |
T2 | 11.19 | -1.61 | 14.45 |
T3 | 13.80 | -2.82 | 4.54 |
T4 | 12.44 | -1.49 | 28.06 |
T5 | 11.98 | -2.37 | 1.98 |
T6 | 11.82 | -0.61 | 31.91 |
表6 不同灌溉模式的产量及构成因素Tab.6 The yield results and constituent factors of different irrigation modes |
处理 | 穗粒数/粒 | 有效穗数/穗 | 千粒重/g | 产量/(kg•hm-2) |
---|---|---|---|---|
T1 | 73.98±4.87a | 498.64±19ab | 25.99±1.08a | 10 029.42±444.98a |
T2 | 77.8±13.08a | 443.44±65.24b | 26.38±0.48a | 9 388.72±510.66ab |
T3 | 76.46±5.08a | 482.08±14.01b | 25.32±0.25a | 9 766.34±331.22a |
T4 | 80.95±2.06a | 441.02±33.52b | 24.88±1.14a | 9 298.14±529.35ab |
T5 | 67.87±6.13ab | 502.59±24.92ab | 25.27±0.18a | 9 014.21±490.41ab |
T6 | 56.01±1.01b | 567.84±6.52a | 24.73±0.29a | 8 239.22±176.69b |
表7 不同灌溉模式可节约黄河水水量Tab.7 Different irrigation modes can save water in the Yellow River |
编号 | 灌水总量/(m³•hm-2) | 单位产量回归水水量(m³•kg-1) | 单位产量黄河水水量(m³•kg-1) | 单位产量可替代黄河水水量(m³•kg-1) | 可替代黄河水水量(m³•hm-2) |
---|---|---|---|---|---|
T1 | 14 080 | 0.86 | 0.68 | 0.45 | 4 126.98 |
T2 | 11 387 | 0.20 | 1.13 | 0.00 | 0 |
T3 | 12 289 | 0.81 | 0.57 | 0.56 | 5 003.41 |
T4 | 11 679 | 0.56 | 0.82 | 0.32 | 2 675.36 |
T5 | 11 638 | 0.41 | 1.00 | 0.13 | 1 076.97 |
T6 | 11 102 | 0.60 | 0.88 | 0.25 | 1 897.80 |
1 |
何进宇, 刘飞杨, 杨佳鹤, 等. 干旱地区水盐胁迫对水稻产量构成及稻谷品质的影响研究[J]. 节水灌溉, 2024(1): 33-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李金刚, 何平如, 陈 菁, 等. 灌溉水盐度对玉米出苗、产量、品质及土壤盐分动态的影响[J]. 节水灌溉, 2024(4): 1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
郭淑豪, 王 军, 佟长福, 等. 交替灌溉对地下水浅埋区水盐分布和玉米生育指标的影响[J]. 灌溉排水学报, 2023, 42(12): 36-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
范德宝, 管 瑶, 贺兴宏, 等. 咸淡水组合灌溉对土壤盐分和棉花生长的影响[J]. 节水灌溉, 2024(3): 17-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
朱 珠, 姚宝林, 李 男, 等. 微咸水灌溉条件下土壤残膜对棉花出苗率与土壤盐分影响研究[J]. 节水灌溉, 2021(3): 7-11.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王国帅, 史海滨, 李仙岳, 等. 河套灌区耕地-荒地-海子系统间不同类型水分运移转化[J]. 水科学进展, 2020, 31(6): 832-842.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李国安, 蒋 静, 马娟娟, 等. 咸水灌溉对土壤水盐分布和小麦产量的影响[J]. 排灌机械工程学报, 2018, 36(6): 544-552.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
陈素英, 邵立威, 孙宏勇, 等. 微咸水灌溉对土壤盐分平衡与作物产量的影响[J]. 中国生态农业学报, 2016, 24(8): 1 049-1 058.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
王少丽, 许 迪, 刘大刚. 灌区排水再利用研究进展[J]. 农业机械学报, 2016, 47(4): 42-48, 28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
刘星辰, 解学敏. 西北农区不同盐分分布下适宜淋洗定额研究[J]. 人民黄河, 2020, 42(11): 157-161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
郭 凯, 巨兆强, 封晓辉, 等. 咸水结冰灌溉改良盐碱地的研究进展及展望[J]. 中国生态农业学报, 2016, 24(8): 1 016-1 024.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
马东豪, 王全九, 苏 莹, 等. 微咸水入渗土壤水盐运移特征分析[J]. 灌溉排水学报, 2006, 25(1): 62-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
朱成立, 杨花蕾, 冯根祥, 等. 微咸水灌溉下粉垄耕作土壤水盐运移特性[J]. 灌溉排水学报, 2024, 43(2): 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
史晓楠, 王全九, 巨 龙. 微咸水入渗条件下Philip模型与Green-Ampt模型参数的对比分析[J]. 土壤学报, 2007, 44(2): 360-363.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
常 凯, 邢旭光. 不同钠质化程度土壤水分特征曲线及土体收缩特征[J]. 灌溉排水学报, 2021, 40(10): 131-136, 144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
孙忠明, 邹广萍, 耿文良. 水稻产量构成因素对产量影响试验研究[J]. 农业科技通讯, 2012(3): 52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
白如霄, 陈 勇, 王 娟, 等. 土壤盐分对膜下滴灌水稻生长及产量的影响[J]. 新疆农业科学, 2016, 53(3): 473-480.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
赵 鹏, 孙书洪, 薛 铸. 盐分胁迫对水稻产量影响试验研究[J]. 节水灌溉, 2020(9): 84-87, 93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
郑崇珂, 戴南平, 周冠华, 等. 黄河三角洲微咸水灌溉对水稻产量的影响[J]. 节水灌溉, 2023(3): 17-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |