
大渡河适宜生态流量评价研究
卫仁娟, 潘妮, 赵璐, 史雯雨
大渡河适宜生态流量评价研究
Study on the Evaluation of Suitable Ecological flow of Dadu River
生态流量是保障流域水生态环境可持续发展的重要指标。为科学确定大渡河的生态流量,基于大渡河泸定站1993-2022年实测日流量资料,采用Tennant法、枯水频率法、月保证率法等8种水文学法计算大渡河泸定站生态流量值,并建立基于偏差指数和满足率的综合指数评价各方法的适宜性。结果表明:①大渡河泸定站径流变化呈现不显著的增加趋势,水文情势变化较低,径流序列一致性较好;②各水文学法计算生态流量评价结果各有优劣,月保证率法和变化范围分析法(RVA法)的综合指数最高,水文节律表现较好,推荐月保证率法和RVA法作为大渡河泸定站的生态流量计算方法。③月保证率法推荐的生态流量最小值为167.1 m³/s,最大值为1 942 m³/s,均值为801.8 m³/s;RVA法推荐生态流量最小值为161.9 m³/s,最大值为1 217 m³/s,均值为549.6 m³/s。
Ecological flow has been treated as a critical index to ensure the sustainable development of the ecological environment in the basin. In order to scientifically determine the ecological flow of the Dadu River, based on the daily runoff data of Luding hydrology station from 1993 to 2022, eight hydrological methods, including the Tennant method, Low Water Frequency method, and Monthly Guarantee Rate method, among others, were used to calculate the ecological flow of Dadu River. The applicability of different methods in Dadu River was comprehensively evaluated using composite index based on deviation index and standard attainment rate. Results showed that: ① The runoff at the Luding Station on the Dadu River exhibited a slight but statistically insignificant increasing trend. The degree of the hydrological regime was low, and the runoff series demonstrated good consistency. ② The ecological flow evaluation results of various hydrological methods were of varying quality, with the monthly assurance rate method and RVA method having the highest comprehensive index and good hydrological rhythm representation. Therefore, the monthly assurance rate method and RVA method are recommended as the ecological flow calculation methods for the Dadu River at Luding Station. ③ The recommended minimum and maximum ecological flow rates based on the monthly assurance rate method are 167.1 m³/s and 1 942 m³/s, respectively, with an average of 801.8 m³/s; the recommended minimum and maximum ecological flow rates based on the RVA method are 161.9 m³/s and 1 217 m³/s, respectively, with an average of 549.6 m³/s.
生态流量 / 水文学法 / 综合评价 / 大渡河 {{custom_keyword}} /
ecological flow / hydrology method / comprehensive evaluation / Dadu river {{custom_keyword}} /
表1 月流量变动法计算生态流量值标准Tab.1 Standard for calculating ecological flow value by monthly flow change method |
类型 | | 40% | |
---|---|---|---|
流量 | 60% | 45% | 30% |
表2 泸定站流量特征统计Tab.2 Flow characteristic values of Luding station |
多年平均流量/(m³·s-1) | 最大来水年 | 最小来水年 | 变差系数 | 极值比 | ||
---|---|---|---|---|---|---|
年份 | 流量/(m³·s-1) | 年份 | 流量/(m³·s-1) | |||
902 | 2020 | 1 204 | 2002 | 581 | 0.16 | 2.07 |
表3 不同水文学法生态流量计算结果统计 (m³/s)Tab.3 Ecological flow of different hydrology methods |
方法 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tennant法 | 90.2 | 90.2 | 90.2 | 90.2 | 270.6 | 270.6 | 270.6 | 270.6 | 270.6 | 270.6 | 90.2 | 90.2 |
枯水频率法 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 | 171.4 |
月保证率法 | 186.6 | 167.1 | 182.3 | 297.4 | 710.0 | 1 820 | 1 942 | 1 312 | 1 456 | 905.7 | 405.9 | 233.7 |
改进月保证率法 | 140.2 | 140.2 | 140.2 | 140.2 | 140.2 | 223.7 | 244.9 | 140.2 | 174.3 | 140.2 | 140.2 | 140.2 |
年内展布法 | 143.6 | 122.7 | 129.7 | 205.2 | 458.0 | 1014 | 1097 | 758.6 | 817.1 | 628.5 | 307.5 | 192.2 |
月流量变动法 | 158.3 | 135.1 | 142.9 | 169.6 | 252.3 | 558.5 | 604.4 | 417.9 | 450.1 | 346.2 | 254.1 | 211.7 |
Texas法 | 129.4 | 111.0 | 117.7 | 186.6 | 413.8 | 910.0 | 971.1 | 656.0 | 727.8 | 559.8 | 277.4 | 171.9 |
RVA法 | 179.3 | 161.9 | 177.5 | 290.9 | 593.7 | 1 217 | 1 136 | 629.3 | 903.2 | 694.7 | 391.1 | 221.5 |
表4 各月综合指数Tab.4 Composite index table of each month |
方法 | 1月 | 2月 | 3月 | 4月 | 5月 | 6月 | 7月 | 8月 | 9月 | 10月 | 11月 | 12月 | 各月均值 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tennant法 | 1.25 | 1.25 | 1.29 | 1.15 | 1.24 | 1.07 | 1.09 | 1.14 | 1.10 | 1.16 | 1.08 | 1.17 | 1.16 |
枯水频率法 | 1.70 | 1.82 | 1.89 | 1.38 | 1.14 | 1.04 | 1.05 | 1.08 | 1.06 | 1.09 | 1.19 | 1.41 | 1.23 |
月保证率法 | 1.84 | 1.77 | 2.05 | 2.22 | 2.17 | 1.81 | 1.63 | 1.51 | 1.49 | 1.87 | 1.87 | 1.71 | 1.79 |
改进月保证率法 | 1.49 | 1.58 | 1.60 | 1.28 | 1.11 | 1.06 | 1.08 | 1.07 | 1.06 | 1.07 | 1.15 | 1.30 | 1.19 |
年内展布法 | 1.51 | 1.44 | 1.52 | 1.52 | 1.47 | 1.45 | 1.42 | 1.45 | 1.41 | 1.46 | 1.48 | 1.49 | 1.47 |
月流量变动法 | 1.61 | 1.54 | 1.62 | 1.38 | 1.22 | 1.20 | 1.22 | 1.23 | 1.21 | 1.22 | 1.35 | 1.58 | 1.33 |
texas法 | 1.43 | 1.36 | 1.44 | 1.44 | 1.41 | 1.39 | 1.37 | 1.39 | 1.37 | 1.41 | 1.41 | 1.41 | 1.40 |
RVA法 | 1.75 | 1.77 | 1.96 | 1.80 | 1.68 | 1.56 | 1.43 | 1.38 | 1.44 | 1.52 | 1.67 | 1.62 | 1.60 |
表5 各方法计算的生态流量与多年平均流量相关性Tab.5 Correlation coefficient between ecological flow calculatedby different methods and annual average flow |
计算方法 | 相关系数(R) |
---|---|
Tennant法 | 0.886 |
枯水频率法 | 0 |
月保证率法 | 0.996 |
改进月保证率法 | 0.810 |
年内展布法 | 1.000 |
月流量变动法 | 0.991 |
texas法 | 1.000 |
RVA法 | 0.979 |
1 |
刘悦忆, 朱金峰, 赵建世. 河流生态流量研究发展历程与前沿[J]. 水力发电学报, 2016,35(12):23-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
江善虎, 周 乐, 任立良, 等. 基于生态流量阈值的河流水文健康演变定量归因[J]. 水科学进展, 2021,32(3):356-365.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张一鸣. 淮河典型河段生态流量组合确定及其整体形式保证率评估[D]. 郑州: 郑州大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
水利部. 水利部关于做好河湖生态流量确定和保障工作的指导意见[J]. 中华人民共和国水利部公报, 2020(2):1-3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
陈在妮, 刘宏高, 黄克威, 等. 大渡河干流已建水电站生态基流目标值复核分析[J]. 水生态学杂志, 2024,45(1):50-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
邓旭艳, 王文君, 方艳红, 等. 大渡河乐山段鱼类群落结构特征研究[J]. 水生态学杂志, 2020,41(2):53-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
田肖冉, 姜 宁, 施 巧, 等. 基于改进年内展布法的河流生态流量研究[J]. 节水灌溉, 2022(10):31-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
梅亚东. 水资源规划及管理[M]. 北京: 中国水利水电出版社, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
姚航斌, 万东辉, 张 丽, 等. 适用于西南山区河流的生态流量确定方法研究[J]. 水文, 2023,43(5):57-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
易 燃, 谈广鸣, 常剑波, 等. 基于分布流量法的长江宜昌段生态需水研究[J]. 中国农村水利水电, 2023(12):94-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李学武, 黄领梅. 基于多种水文学方法的秦岭北麓典型河流生态流量分析[J]. 水电能源科学, 2024,42(1):10-13+17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
皇甫欣予, 陈 星, 田传冲, 等. 曹娥江适宜生态流量计算和评价研究[J]. 水文, 2024,44(3):60-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
林诗隽, 张红艳, 莫建英, 等. 基于水文学法的漓江生态流量研究[J]. 人民长江, 2023,54(9):76-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李 强, 王俏俏, 陈红丽, 等. 生态流量方法应用现状研究[J]. 生态学报, 2024,44(1):36-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
赵渔亨, 晁立强, 王远坤, 等. 基于水文学法的生态流量适宜性评价研究[J]. 人民长江, 2024,55(2):101-108+124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
程倩倩, 方红远, 李于坤, 等. 苏北平原区河流生态水位阈值计算方法适用性研究[J]. 水文, 2024,44(2):74-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
郭率,刘鑫,周美蓉,等.长江中游水沙通量时空变化及河床冲淤分布特征[J/OL].中国农村水利水电,2024-10-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |