
零流量工况下立式离心泵振动特性试验研究
乐育生, 李力, 刘功亮, 王志远, 朱劲木
零流量工况下立式离心泵振动特性试验研究
Experimental Study on Vibration Characteristics of a Vertical Centrifugal Pump Under Zero Flow Condition
离心泵在启动时一般为关阀启动,即为零流量工况。立式离心泵在长距离调水和大型灌溉工程中应用日益广泛。为探究立式离心泵零流量工况下振动特性,在水泵底座布置了1个三向振动传感器,在水泵进、出口法兰盘顶部各布置1个轴向振动传感器以及在水泵出口管道顶部布置1个压力脉动传感器,测试了零流量工况下额定转速(1.0 nr)以及1.2 nr、0.8 nr、0.6 nr、0.4 nr等5个不同转速下的水泵振动和压力脉动。结果表明:零流量工况下立式离心泵进口轴向、出口轴向和底座轴向上的振动均较大;升速至1.2倍额定转速,底座轴向上的振动强度增至额定转速振动强度的1.6倍,降速至0.8倍额定转速,振动强度降至额定转速振动强度的1/4倍,降低转速启动,能大幅度降低水泵的振动强度;叶片频率是水泵进口、出口和底座轴向方向振动的主要频率,压力脉动是零流量工况下立式离心泵振动的一个重要激励源。研究结果可为同类大型立式离心泵的设计以及泵站建成后的运行管理提供参考。
The centrifugal pump is generally started with the valve closed when starting, that is, zero flow condition. Vertical centrifugal pumps are widely used in long-distance water transfer and large-scale irrigation projects. In order to investigate the vibration characteristics of a vertical centrifugal pump under zero flow condition, a three-direction vibration sensor is arranged on the base of the pump; an axial vibration sensor is arranged on the top of the inlet and outlet flanges of the pump; a pressure fluctuation sensor is arranged on the top of the outlet pipe of the pump. The vibration and pressure fluctuation of the pump at rated speed (1.0 nr), 1.2 nr, 0.8 nr, 0.6 nr and 0.4 nr were tested. The results show that: the inlet axial, outlet axial and base axial vibration of the vertical centrifugal pump are larger under zero flow condition. When the speed is increased to 1.2 times of the rated speed, the vibration strength of the base axis is increased to 1.6 times of that at the rated speed, and when the speed is reduced to 0.8 times of the rated speed, the vibration strength is reduced to 1/4 times of that at the rated speed. When the speed is reduced, the vibration strength of the pump can be greatly reduced. Blade frequency is the main frequency of pump inlet, outlet and base axial vibration, and pressure fluctuation is an important excitation source for vibration of vertical centrifugal pump under zero flow condition. This paper can provide reference for the design of similar large vertical centrifugal pump and the operation management of the pump station after completion.
立式离心泵 / 零流量工况 / 大范围变速 / 振动特性 / 压力脉动 {{custom_keyword}} /
vertical centrifugal pump / zero flow condition / wide range of speed regulation / vibration / pressure fluctuation {{custom_keyword}} /
图1 试验台结构示意图Fig.1 Schematic of the experimental setup |
表1 试验泵主要参数Tab.1 Test pump main parameter |
型号 | 额定流量/(m3•h-1) | 额定扬程/m | 额定转速/(r•min-1) | 比转速 | 叶片数/个 |
---|---|---|---|---|---|
KQH100-125A | 89 | 16 | 2 960 | 212 | 6 |
图3 额定转速不同测点振动时域图Fig.3 Time domain of vibration at different measuring points at rated speed |
图4 额定转速不同测点振动峰峰值Fig.4 Peak-to-peak value of vibration at different measuring points at rated speed |
图6 不同转速水泵底座Z方向振动时域图Fig.6 Time domain of Z direction vibration at pump base at different speed |
图7 不同转速水泵底座Z方向振动峰峰值Fig.7 Peak-to-peak value of Z direction vibration at pump base at different speed |
图9 水泵底座Z方向振动与水泵出口压力脉动比较Fig.9 Comparison between Z direction vibration at pump base and pressure fluctuation at pump outlet |
图10 水泵进口振动与水泵出口压力脉动比较Fig.10 Comparison between vibration at pump inlet and pressure fluctuation at pump outlet |
1 |
张德胜, 杨 港, 赵旭涛, 等. 基于BP神经网络的立式离心泵导叶与蜗壳优化设计[J]. 农业机械学报, 2022, 53(4): 130-139.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张世杰, 靳发业, 姚志峰, 等. 双吸离心泵泵站压力脉动与振动特性现场试验研究[J]. 水利学报, 2021, 52(9): 1 047-1 058.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张 宁, 杨敏官, 高 波, 等. 变工况对侧壁式离心泵振动特性的影响[J]. 工程热物理学报, 2015, 36(7): 1 471-1 475.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
庞 熙, 李文强, 刘 芸, 等. 立式轴流泵装置马鞍区振动特性研究[J]. 节水灌溉, 2024(5): 66-73, 79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
胡芳芳, 陈 涛, 吴大转, 等. 导叶式混流泵振动噪声的实验研究[J]. 工程热物理学报, 2013, 34(5): 874-877.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
唐晓晨, 尚欢欢, 郭 超, 等. 轴系平行不对中对离心泵转子系统振动特性的影响[J]. 中国农村水利水电, 2021(8): 103-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
杨佳钦, 刘德祥. 轴流泵在叶轮和泵壳间隙不足情况下运行的碰磨振动特性研究[J]. 中国农村水利水电, 2024(3): 214-224.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
潘罗平. 水轮机压力脉动信号采集方法的研究[J]. 大电机技术, 2004(2): 63-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
何成连, 王正伟, 邱 华. 水轮机尾水管内部压力脉动试验研究[J]. 机械工程学报, 2002, 38(11): 62-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水力机械(水轮机、蓄能泵和水泵水轮机)振动和脉动现场测试规程: GB/T 17189—2007 [S]. 北京: 中国标准出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
吴贤芳, 谈明高, 刘厚林, 等. 离心泵关死点内流诱导振动测试[J]. 中国农村水利水电, 2015(1): 176-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
朱双良, 高正波, 姚亮, 等. 牛栏江-滇池补水工程干河泵站泵组分段调试方案优越性分析[C]//云南省科学技术协会.云南省水利学会2013年度学术交流会论文集. 云南玉溪, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |