
输水渠隧系统典型事故工况水力响应初探
王乾坤, 翟文琳, 管光华, 易放辉, 杨家亮, 黄跃群
输水渠隧系统典型事故工况水力响应初探
Study on Hydraulic Response of Canal and Tunnel System Under Accident Condition
在输水建筑物运行中,及时发现和预警渠隧系统中的异常数据以及其相应的事故工况可以为渠隧系统的安全运行提供重要保障。研究目的在于探索出输水渠隧系统在典型事故工况下的水力响应特征,为灌区管理人员提供事故水力响应特征。基于HEC-RAS软件针对渠隧系统常见的事故工况提出了概化模型,并根据其水力响应特征检验了其有效性。研究表明:①洪水入渠事故发生时,会出现上下游水位上升,上游流量先下降后稳定到原流量的趋势,其中最大漫溢水头为0.14 m。②结构破坏事故发生时,渠道上、下游水位以及下游流量逐步下降,上游流量先上升后下降至原流量的趋势,其中最大泄漏流量为9.95 m3/s。③隧洞局部垮塌事故发生时,渠道上游水位雍高,上游流量,下游水位以及流量均呈现先下降再逐渐恢复至原水位流量的趋势,其中最大雍高水位为0.460 m。该事故概化模型能够较好地反应事故工况下的输水建筑物动态变化情况。本研究得出的水力响应特性可为事故应急预案的制定及应急调度提供借鉴和参考,对发展长距离输水建筑物安全化建设具有一定的推进意义。
In the operation of water transport buildings, timely detection and early warning of abnormal data and corresponding accident conditions can provide an important guarantee for the safe operation of canal and tunnel system. The purpose of this paper is to explore the hydraulic response characteristics of the canal and tunnel system under typical accident conditions, so as to provide the accident hydraulic response characteristics for the managers of the irrigation district. In this paper, based on HEC-RAS software, a generalized model is proposed for the common accident conditions of canal and tunnel system, and its effectiveness is tested according to its hydraulic response characteristics. The research shows that: ① When the flood enters the channel, the upstream and downstream water levels will rise, and the upstream flow will first decline and then stabilize to the original flow, with a maximum overflow head is 0.14 m. ② When the structural damage accident occurs, the upstream and downstream water levels and downstream flow of the channel will gradually decline. The upstream flow increases first and then decreases to the original flow, and the maximum leakage flow is 9.95 m3/s. ③ When the local collapse accident of the tunnel occurs, the water level of the upstream channel is high. The upstream flow, downstream water level and flow showed a trend of first decreasing and then gradually recovering to the original water level flow, and the maximum water level was 0.460 m. The generalized accident model can effectively reflect the dynamic change of water transport structures under accident conditions. The hydraulic response characteristics obtained in this study can provide reference for the formulation of accident emergency plan and emergency dispatch, and has significance implications for the development of safety measures in the construction of long-distance water transport systems.
输水系统 / 渠隧事故 / 水力响应 / 事故识别 / HEC-RAS {{custom_keyword}} /
water supply system / canal and tunnel accidents / hydraulic response / accident identification / HEC-RAS {{custom_keyword}} /
表1 干渠基本参数Tab.1 Basic parameters of trunk canal |
渠池编号 | 渠池长度/m | 渠底坡度 | 糙率 | 底宽/m | 设计流量/(m3·s-1) |
---|---|---|---|---|---|
渠池1 | 2 374 | 1/2 500 | 0.014 | 5.8 | 40.0 |
渠池2 | 491 | 1/3 000 | 0.014 | 5.5 | 38.0 |
渠池3 | 10 648 | 1/3 000 | 0.014 | 5.4 | 36.5 |
渠池4 | 3 938 | 1/3 000 | 0.014 | 5.4 | 36.0 |
渠池5 | 19 438 | 1/3 000 | 0.014 | 5.0 | 29.0 |
渠池6 | 8 529 | 1/3 000 | 0.014 | 4.3 | 21.0 |
渠池7 | 4 295 | 1/3 000 | 0.014 | 4.3 | 20.0 |
渠池8 | 6 985 | 1/3 000 | 0.014 | 3.5 | 12.0 |
表2 工况设置Tab.2 Condition setup table |
序号 | 工况类型 | 概化方式 | 工况设置 |
---|---|---|---|
1 | 渠道漫溢事故 | 断面设置洪水入渠 | 单侧漫溢,50%设计流量洪水入渠 |
2 | 结构破坏事故 | 明渠一侧出现溃口 | 溃口宽度1 m,溃口高度4 m |
3 | 隧洞垮塌事故 | 隧洞内断面堵塞 | 隧洞中段垮塌,断面堵塞60% |
表3 各典型事故工况渠池水位、流量响应规律Tab.3 Response rules of water level and flow in each typical accident condition |
工况类型 | 渠池上游 | 渠池下游 | ||
---|---|---|---|---|
水位 | 流量 | 水位 | 流量 | |
洪水入渠并发生漫溢 | ↑ | 先↓后↑至原流量 | ↑ | 先↑后↓ |
结构破坏 | ↓ | 先↑后↓至原流量 | ↓ | ↓ |
隧洞局部垮塌 | ↑ | 先↓后↑至原流量 | 先↓后↑至原水位 | 先↓后↑至原流量 |
1 |
陈晓宏, 王佳雯, 何艳虎, 等. 基于水资源需求场理论的需水驱动力影响分析[J]. 水科学进展, 2018, 29(3): 357-364.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王 瑗, 盛连喜, 李 科, 等. 中国水资源现状分析与可持续发展对策研究[J]. 水资源与水工程学报, 2008, 19(3): 10-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李俊海. 全球水资源短缺与粮食危机[J]. 生态经济, 2021, 37(3): 5-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
董安建. 我国调水工程设计实践与创新[J]. 中国水利, 2010(20): 13-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
The South-to-North Water Diversion Project Office of the South-to-North Water Diversion Project Construction Committee,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
段文刚, 黄国兵, 王才欢, 等. 大型调水工程突发事件及应急调度预案初探[C]//中国水利学会. 中国水利学会2008学术年会论文集, 2008: 252-256.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
树 锦, 袁 健. 大型输水渠道事故工况的水力响应及应急调度[J]. 南水北调与水利科技, 2012, 10(5): 161-165.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
吴 竞. 南水北调中线漕河段及隧洞塌方原因分析[J]. 水科学与工程技术, 2020(1): 79-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
孙佳斌. 南水北调中线工程运行安全事故应急决策系统研究[D]. 郑州: 华北水利水电大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
崔 巍, 穆祥鹏, 陈文学, 等. 明渠调水工程事故段上游闸门群应急调控研究[J]. 水利水电技术, 2017, 48(11): 13-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
周 嵩, 熊 焰, 倪锦初. 大型输水渠道渗透破坏问题分析[J]. 人民长江, 2019, 50(12): 152-156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
方神光, 吴保生, 赵 刚. 南水北调中线输水渠道的漫溢现象分析[J]. 水利水电科技进展, 2007, 27(4): 11-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
余明辉, 张小峰. 平面二维溃堤水流泥沙数值模拟[J]. 水科学进展, 2001, 12(3): 286-290.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
王正中, 李甲林, 陈 涛, 等. 弧底梯形渠道砼衬砌冻胀破坏的力学模型研究[J]. 农业工程学报, 2008, 24(1): 18-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王 浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 352-358, 331.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |