基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法

谢伟明, 张钟莉莉, 陶建平, 曲明山, 魏一博, 张石锐

PDF(1500 KB)
节水灌溉 ›› 2025 ›› (3) : 57-63. DOI: 10.12396/jsgg.2024265
农业水文及气象

基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法

作者信息 +

Multi-Step Hourly Reference Crop Transpiration Prediction Method Based on EA-BiLSTM-SCSO

Author information +
稿件信息 +

摘要

在农业水资源管理领域,参考作物蒸腾量的精确预测对灌溉水高效利用至关重要。当前逐日预测方法未能充分利用日内动态变化信息,限制了预测准确性。为解决该问题,研究提出了一种基于外部注意力机制(EA)的双向长短时记忆网络(BiLSTM)模型,使用沙猫群算法(SCSO)优化模型超参数,实现逐小时参考作物蒸腾量预测。首先利用SCSO方法对EA-BiLSTM模型进行优化,优化后的算法在70个epoch后收敛,平均 R2升至0.750;进而通过特征相关性分析,将模型输入的特征数据由10个减少为历史ET 0、太阳辐射、空气温度、空气湿度和最大风速5个。以北京市昌平区的国家精准农业研究示范基地大田种植区ET 0预测为例进行了方法验证,在对未来第7小时的预测中,R 2从0.619提高到0.644,获得了更好的预测效果;最后通过对模型可解释性分析证实,历史ET 0对预测的贡献最高,贡献率达到了0.043,其次是空气湿度和总辐射。与DT(决策树)、Lasso(最小绝对收缩和选择算法)、LMP(多层感知机)、CNN(卷积神经网络)等预测方法的对比结果表明,采用EA-BiLSTM-SCSO的预测结果在MAE和MSE指标上均获得了最低的误差值,在R 2指标上,EA-BiLSTM-SCSO模型平均达到0.722较CNN模型提升了12.6%。研究验证了深度学习与特征工程在提高作物参考蒸腾量逐小时预测精度方面的优势。该方法在智慧灌溉中用于估算作物的水分需求,能够实现对未来灌溉的精准预测,从而制定合理的灌溉计划,提高灌溉水利用效率,进行有效的灌溉用水调度。

Abstract

In the field of agricultural water resource management, accurate prediction of crop transpiration is crucial for efficient utilization of irrigation water. The current daily prediction method fails to fully utilize the dynamic changes within the day, which limits the accuracy of the prediction. To address the issue, this study proposes a bidirectional long short term memory network (BiLSTM) based on external attention mechanism (EA), which optimizes model hyperparameters using the Sand Cat Swarm Optimization (SCSO) algorithm for hourly reference crop transpiration prediction. Firstly, the SCSO method was used to optimize the EA-BiLSTM model. The optimized algorithm converged after 70 epochs, and the average coefficient of determination increased to 0.750. Furthermore, five characteristic parameters, historical ET 0, solar radiation, air temperature, air humidity, and maximum wind speed, were selected from the 10 features. In this paper, the method was verified in the field planting area of the national precision Agriculture research Demonstration base in Changping, Beijing. In the prediction of the next 7 hours, the coefficient of determination was increased from 0.619 to 0.644, achieving better prediction results. Finally, through the interpretability analysis of the model, it was confirmed that historical ET 0 had the highest contribution to the prediction, reaching 0.043, followed by air humidity and total radiation. The comparison results with DT, Lasso, LMP, CNN and other forecasting methods show that the prediction results using EA -BiLSTM-SCSO have achieved the lowest error values in both MAE and MSE indicators. In terms of coefficient of determination, the EA-BiLSTM-SCSO model achieved an average of 0.722, which was 12.6% higher than the CNN model. The study validated the advantages of deep learning and feature engineering in improving the hourly prediction accuracy of reference crop transpiration. The method is used to estimate the water demand of crops in intelligent irrigation, which can realize the accurate prediction of future irrigation, so as to formulate reasonable irrigation plans, improve the efficiency of irrigation water utilization, and carry out effective irrigation water scheduling.

关键词

BiLSTM / 外部注意力机制 / 沙猫群优化算法 / 逐小时参考作物蒸腾量预测 / 模型可解释性

Key words

BiLSTM / external attention mechanism / sandcat swarm optimization algorithm / hourly reference crop transpiration prediction / model interpretability

基金

国家重点研发计划项目(2022YFD200160302)
云南省科技厅科技计划项目(202302AE0900200101)
北京市农林科学院优秀青年科学基金(YXQN202304)
北京市科技新星计划资助(20230484375)

引用本文

导出引用
谢伟明 , 张钟莉莉 , 陶建平 , 曲明山 , 魏一博 , 张石锐. 基于EA-BiLSTM-SCSO的多步逐小时参考作物蒸腾量预测方法[J].节水灌溉, 2025(3): 57-63 https://doi.org/10.12396/jsgg.2024265
XIE Wei-ming , ZHANG Zhong-lili , TAO Jian-ping , QU Ming-shan , WEI Yi-bo , ZHANG Shi-rui. Multi-Step Hourly Reference Crop Transpiration Prediction Method Based on EA-BiLSTM-SCSO[J].Water Saving Irrigation, 2025(3): 57-63 https://doi.org/10.12396/jsgg.2024265

参考文献

1
郭元裕. 农田水利学[M]. 3版. 北京: 中国水利水电出版社, 1997.
2
贾 芳, 樊贵盛. 黄土丘陵沟壑区自然条件下不同辐射面蒸发蒸腾量的预测[J]. 节水灌溉, 2022(4):89-93.
JIA F, FAN G S. Prediction of evapotranspiration from different radiation surfaces under natural conditions in the loess hilly and Gully Region[J]. Water Saving Irrigation, 2022(4):89-93.
3
Linvolak Pich, 蔡焕杰, Qaisar Saddique, 等. 关中地区夏玉米和冬小麦不同蒸发蒸腾量估算方法的研究[J]. 节水灌溉, 2019(8):39-47.
PICH L, CAI H J, SADDIQUE Q, et al. Study on different methods for estimating evapotranspiration of summer maize and winter wheat in Guanzhong area[J]. Water Saving Irrigation, 2019(8):39-47.
4
刘玉甫, 曹 伟. 基于支持向量机优化粒子群算法的作物生育期ET0预测[J]. 现代农业科技, 2014(2):219-220+228.
LIU Y F, CAO W. Prediction of ET0 based on particle swarm optimization and support vector regression[J]. Modern Agricultural Science and Technology, 2014(2):219-220+228.
5
魏光辉, 马 亮, 董新光, 等. 基于气象参数的内陆干旱区作物生育期ET 0预测[J]. 干旱地区农业研究, 2014,32(4):65-69+121.
WEI G H, MA L, DONG X G, et al. Prediction of ET 0 during growth period of crops in inner arid areas based on meteorological parameters[J]. Agricultural Research in the Arid Areas, 2014,32(4):65-69+121.
6
李 莉, 李文军, 马德新, 等. 基于LSTM的温室番茄蒸腾量预测模型研究[J]. 农业机械学报, 2021,52(10):369-376.
LI L, LI W J, MA D X, et al. Prediction model of transpiration of greenhouse tomato based on LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021,52(10):369-376.
7
WANG S C, YU X G, LI Y, et al. Application of a hybrid deep learning approach with attention mechanism for evapotranspiration prediction: A case study from the mount Tai Region, China[J]. Earth Science Informatics, 2023,16(4):3 469-3 487.
8
李珊珊, 赵春江, 吴华瑞, 等. 基于CNN-BiLSTM融合神经网络的温室甘蓝潜在蒸散量预测[J/OL]. 吉林农业大学学报, 2021:1-10. (2021-11-16).
9
SHAIKH A A S, BHARGAVI M S, KUMAR C P. An optimised Darknet traffic detection system using modified locally connected CNN-BiLSTM network[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2023,43(2):87-96.
10
SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]// 2019 IEEE International Conference on Big Data (Big Data), 2019:3 285-3 292.
11
RAKIB A B, RUMKY E A, ASHRAF A J, et al. Mental healthcare chatbot using sequence-to-sequence learning and BiLSTM[M]//Brain Informatics. Cham: Springer International Publishing, 2021:378-387.
12
LI B, LI H R, LIANG Z C, et al. Load day-ahead automatic generation control reserve capacity demand prediction based on the attention-BiLSTM network model optimized by improved whale algorithm[J]. Energies, 2024,17(2):415.
13
ZHANG W H, WU P P, SUN Y B, et al. Research on power load forecasting based on modified-SCSO optimized LSTM[C]//2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2), 2023:5 329-5 334.
14
M R D E, ALMAKAYEEL N, LYDIA E L. Improved sand cat swarm optimization with deep learning based enhanced malicious activity recognition for cybersecurity[J]. Alexandria Engineering Journal, 2024,98:187-198.
PDF(1500 KB)

45

访问

0

引用

详细情况

段落导航
相关文章

/