
微咸水灌溉与施肥方式对盐碱地水稻生理特性、产量及品质的互作效应
王璐, 侯红燕, 胡鑫慧, 郭洪海, 贾曦
微咸水灌溉与施肥方式对盐碱地水稻生理特性、产量及品质的互作效应
Interactive Effect of Brackish Fresh Water Irrigation and Fetilization Methods on Physilogical Characteristics, Yield and Quality of Rice in Saline Alkali Soil
探索黄河三角洲滨海滩涂微咸水与淡水联合灌溉对水稻生理生长特性及品质的影响。以‘圣香1826’为试验材料,设置主区为淡水灌溉(FI,全生育期均灌溉淡水)、微咸水-淡水联合灌溉(BFI,插秧后至分蘖前灌溉淡水,分蘖期至成熟期补灌微咸水)2种灌溉制度;裂区为5种施肥方式T1(常规施肥,当地习惯施肥N 300 kg/hm2)、T2(减N20%,N240 kg/hm2)、T3(减N20%,穗肥增施K,N240 kg/hm2+K36 kg/hm2)、T4(减N20%,蘖肥增施Ca,N240 kg/hm2+Ca18 kg/hm2)、T5(减N20%增施K和Ca,N240 kg/hm2+K36 kg/hm2+Ca 18 kg/hm2)。结果表明,BFIT5处理可以显著的延长水稻的营养生长期与生殖生长期,Ca肥补施,使水稻植株Na+含量降低24.35%(P<0.05)、K+含量提高20.20%、Na+/K+降低、过氧化氢酶(CAT)含量升高13.06%、脯氨酸(Pro)含量升高20.69%、可溶性糖含量升高了9.19%,提高了植株的抗性;BFIT5处理使水稻的有效穗数提高30.1%、穗总粒数提高7.2%、穗实粒数提高38.2%、结实率提高28.9%、产量提高38.2%、稻米的食味值增加6、崩解值升高、消减值降低、蒸煮品质升高。在分蘖期开始浇灌微咸水,且减少常规施氮量的20%、增施K和Ca肥,节约稻田用淡水的同时提高了微咸水资源的利用效率,具有重要的实践意义。
The purpose of this study was to explore the effcts of combined irrigation of brackis water and fresh water on the salt leaching in the topsoil of paddy fields, the physiological growth characteristics and quality of rice in the coastal mudflat of the Yellow River Delta. Used ‘Shengxiang 1826’ as experimental material. Set up two irrigation systems for the main area: freshwater irrigation (FI, irrigatied freshwater throughout the entire growth period), brackish water-freshwater combined irrigation (BFI, irrigating freshwater from transplanting to tillering, and supplementing brackish water from tillering to maturity). Set up five fertilization methods for the cracking area: T1 (conventional fertilization, locally customary fertilization of N 300 kg/hm2), T2 (reducing N20%, N240 kg/hm2), T3 (reducing N20%, increasing spike fertilizer K, N240 kg/hm2+K36 kg/hm2), T4 (reducing N20%, increasing tillering fertilizer Ca, N240 kg/hm2+Ca18 kg/hm2), T5 (reducing N20% and increasing K and Ca, N240 kg/hm2+K36 kg/hm2+Ca 18 kg/hm2).The results showed that BFIT5 treatment can significantly prolong the nutritional and reproductive growth periods of rice plants. Ca fertilizer supplementation reduces Na+content by 24.35% (P<0.05), increases K+content by 20.20%, decreases Na+/K+, increases catalase activity (CAT) content by 13.06%, increases proline (Pro) content by 20.69%, and increases soluble sugar content by 9.19%, improving plant resistance. BFIT5 treatment increased the effective number of panicles in rice by 30.1%, the total number of grains per panicle by 7.2%, the number of grains per panicle by 38.2%, the seed setting rate by 28.9%, the yield by 38.2%, the taste value of rice by 6%, the disintegration value, the reduction value, and the cooking quality. Starting to irrigate brackish water during the tillering stage, reducing the conventional nitrogen by 20% and increasing the K and Ca fertilizers, which can saves fresh water for rice fields while improving the utilization efficiency of brackish water resources, which has important practical significance.
微咸水灌溉 / 水稻 / 水肥耦合 / 生理特性 / 水肥互作 {{custom_keyword}} /
brackish water irrigation / rice / water fertilizer coupling / physiological characteristics / water fertilizer interaction {{custom_keyword}} /
表1 各处理肥料种类及用量 (kg/hm2)Tab.1 Type and amount of fertilizer and supplement amount of P and K fertilizer |
施肥处理 | 纯氮 | 基肥 | 蘖肥 | 穗肥 | ||
---|---|---|---|---|---|---|
磷酸二胺 | 尿素 | 过磷酸钙 | 尿素 | 硫酸钾 | ||
T1 | 300 | 375 | 355.5 | 0 | 150 | 0 |
T2 | 240 | 300 | 285 | 0 | 120 | 0 |
T3 | 240 | 300 | 285 | 0 | 120 | 72 |
T4 | 240 | 300 | 285 | 150 | 120 | 0 |
T5 | 240 | 300 | 285 | 150 | 120 | 72 |
表2 不同灌溉方式和施肥方式对水稻产量指标的影响Tab.2 The influence of different irrigation and fertilization methods on rice yield indicators |
处理 | 有效穗数 | 穗总粒数 | 穗实粒数 | 结实率/ % | 千粒重/ g | 产量/ (kg·km-2) | |
---|---|---|---|---|---|---|---|
灌溉方式 | 施肥方式 | ||||||
FI | T1 | 294±1.4 a | 141.6±16.3a | 133.4±5.9a | 94.2±3.6a | 25.70±0.25a | 8 908.65±32.16a |
T2 | 243 ±1.0c | 141.1 ±15.9a | 122.5±3.2b | 86.8 ±2.0b | 25.73±0.23a | 7 678.50±25.00b | |
T3 | 249 ±1.4c | 142.0 ±16.7a | 131.3±4.1a | 92.5 ±2.4a | 25.69±0.20a | 8 021.70±26.03c | |
T4 | 285 ±1.6a | 141.9 ±17.2a | 129.2±6.0c | 91.1 ±2.4a | 25.70±0.19a | 8 210.55±28.16d | |
T5 | 297 ±1.2a | 140.8 ±10.4a | 132.6±4.7a | 94.2 ±3.1a | 25.67±0.22a | 8 853.60±26.35a | |
BFI | T1 | 199.5±1.1d | 129.3 ±17.5b | 93.8±3.7d | 72.5 ±2.1d | 25.62±0.24a | 5 808.75±19.86e |
T2 | 172.5±1.0e | 112.6 ±16.3c | 90.6±5.7e | 80.5 ±3.5c | 25.70±0.23a | 5 486.75±18.64f | |
T3 | 177 ±1.2e | 121.4 ±20.0d | 113.5±5.3f | 93.5 ±3.2a | 25.70±0.23a | 5 881.35±12.35e | |
T4 | 240 ±1.3c | 130.3 ±16.3b | 114.1±6.5f | 87.6 ±3.3b | 25.68±0.27a | 6 356.70±20.36g | |
T5 | 259.5 ±1.3ab | 138.6±16.7a | 129.6±5.1c | 93.5±3.1a | 25.69±0.23a | 8 027.85±22.57c | |
灌溉方式I | 平方和 | 10 208.03 | 565.50 | 1 153.48 | 97.00 | 0.001 | 10 632 909.46 |
自由度 | 1 | 1 | 1 | 1 | 1 | 1 | |
F值 | 38.89* | 11.42* | 11.08* | 2.36** | 1.29ns | 30.78* | |
施肥方式T | 平方和 | 7 540.65 | 190.81 | 698.27 | 198.06 | 0.003 | 4 188 889.81 |
自由度 | 4 | 4 | 4 | 4 | 4 | 4 | |
F值 | 7.18** | 0.96ns | 1.68ns | 1.20ns | 1.05ns | 3.03** | |
I×T | 平方和 | 18 798.53 | 760.98 | 2 268.08 | 459.75 | 0.007 | 16 203 674.35 |
自由度 | 9 | 9 | 9 | 9 | 9 | 9 | |
F值 | 71.62* | 15.36* | 21.79* | 11.47* | 9.50** | 46.90* |
表3 不同灌溉方式和施肥方式对水稻生理生化指标的影响Tab.3 Effects on physiological and biochemical indicators of stress resistance of rice |
处理 | 地上部Na+含量/(mg·g-1) | 地上部K+含量/ (mg·g-1) | 地上部 Na+/K+ | CAT/ (U·g-1·mim) | Pro/ (FW%) | 可溶性糖含量/ (mg·g-1) |
---|---|---|---|---|---|---|
FIT1 | 102.6±10.3c | 45.9±7.2ab | 2.24±0.4c | 2.00±0.35c | 0.052±0.007d | 36.12±4.28e |
FIT2 | 106.4±8.9c | 46.1±6.7a | 2.22±0.3c | 2.14±0.21c | 0.050±0.003d | 36.00±2.38e |
FIT4 | 93.5±10.1d | 47.2±6.5a | 2.13±0.6b | 2.09±0.25c | 0.050±0.003d | 39.08±3.74d |
BFIT1 | 145.8±9.3b | 40.1±8.3b | 3.64±0.1b | 3.14±0.20b | 0.058±0.007c | 42.34±2.74c |
BFIT2 | 169.5±7.9a | 39.6±7.4c | 4.28±0.1a | 3.15±0.32b | 0.063±0.006b | 44.33±4.75b |
BFIT4 | 110.3±10.1c | 47.2±7.7a | 2.29±0.3c | 3.55±0.33a | 0.070±0.002a | 46.23±2.85a |
表4 不同灌溉方式和施肥方式对水稻食味品质的影响Tab.4 Effects of different treatments on rice taste quality in coastal saline alkali land |
处理 | 蛋白质含量/% | 直链淀粉含量/% | 食味值 | |
---|---|---|---|---|
施肥方式 | 灌溉方式 | |||
FI | T1 | 7.1±0.1B | 18.4±0.2BC | 77±1 |
T2 | 6.9±0.2C | 18.2±0.1C | 79±1 | |
T3 | 7.2±0.2AB | 18.5±0.1BC | 75±1 | |
T4 | 6.8±0.1C | 18.0±0.1D | 79±1 | |
T5 | 7.3±0.1AB | 18.8±0.2A | 72±1 | |
BFI | T1 | 7.3±0.2AB | 18.8±0.1A | 71±1 |
T2 | 7.5±0.2A | 18.9±0.1A | 66±1 | |
T3 | 7.4±0.1A | 18.7±0.1AB | 74±1 | |
T4 | 7.3±0.1AB | 18.8±0.2A | 69±1 | |
T5 | 7.0±0.1BC | 18.3±0.2C | 77±1 | |
灌溉方式I | 平方和 | 0.15 | 0.26 | 62.50 |
自由度 | 1 | 1 | 1 | |
F值 | 2.34** | 1.92ns | 2.43** | |
施肥方式T | 平方和 | 0.07 | 0.05 | 5.40 |
自由度 | 4 | 4 | 4 | |
F值 | 0.27ns | 0.10ns | 0.05ns | |
I×T | 平方和 | 046 | 0.84 | 170.9 |
自由度 | 9 | 9 | 9 | |
F值 | 7.41** | 6.32** | 6.64** |
图3 不同灌溉方式和施肥方式对水稻RVA谱的影响Fig.3 The effect of different irrigation and fertilization methods on rice RVA spectra |
表5 不同灌溉方式和施肥方式对水稻RVA谱特征值的影响Tab.5 The effect of different irrigation and fertilization methods on rice RVA spectrum values |
处理 | 峰值 黏度/ (Pa·s) | 热浆 黏度/ (Pa·s) | 崩解值/(Pa·s) | 最终 黏度/(Pa·s) | 消减值/(Pa·s) | 峰值 时间/ s |
---|---|---|---|---|---|---|
F1T1 | 3 358c | 1 943c | 1 415c | 3 252c | -106f | 332b |
F1T2 | 3 476b | 1 986b | 1 490b | 3 352b | -124h | 340ab |
F1T3 | 3 207d | 1 837de | 1 370cd | 3 114d | -93e | 321c |
F1T4 | 3 561a | 2 020a | 1 541a | 3 408a | -153i | 355a |
F1T5 | 3 174e | 1 847d | 1 327e | 3 122d | -52d | 318cd |
F1T1 | 3 125e | 1 783e | 1 342e | 3 088e | -37c | 314cd |
F1T2 | 2 957g | 1 691f | 1 266g | 2 970f | 13a | 300d |
F1T3 | 3 201d | 1 826de | 1 375cd | 3 120d | -81d | 320c |
F1T4 | 3 072f | 1 779e | 1 293f | 3 073e | 1b | 304d |
F1T5 | 3 384c | 1 961 c | 1 423c | 3 272c | -112g | 335b |
1 |
赵 英, 王 丽, 赵惠丽, 等. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022,38(3):67-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
郑崇珂, 戴南平, 周冠华, 等. 黄河三角洲微咸水灌溉对水稻产量的影响[J]. 节水灌溉, 2023(3):17-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王卫光, 王修贵, 沈荣开, 等. 微咸水灌溉研究进展[J]. 节水灌溉, 2003(2):9-11+46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王茜, 董世德, 崔光旭, 等. 咸淡水交替滴灌对滨海盐渍土水盐动态和作物生长的影响[J]. 灌溉排水学报, 2023,42(S1):18-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
李博,王洪德,丁继辉,等.不同微咸水灌溉模式下盐碱土脱盐效率及水稻生长效应[J].中国农村水利水电,2024,11(12):1-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
宫 亮, 金丹丹, 牛世伟, 等. 长期定位氮肥减施对水稻产量和氮素吸收利用的影响[J]. 中国稻米, 2022,28(3):42-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
马琴国, 王引权, 赵 勇. 蒽酮—硫酸比色法测定党参中可溶性糖含量的研究[J]. 甘肃中医学院学报, 2009,26(6):46-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
董晓亮, 侯红燕, 张金凤, 等. 缓释肥和无机肥配施对滨海盐碱地水稻生长和食味品质的影响[J]. 中国农学通报, 2021,37(4):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
郭 涛, 侯红燕, 王海凤, 等. 施氮量对黄河三角洲盐碱地圣稻2620产量、品质和淀粉RVA谱特性影响[J]. 山东农业科学, 2020,52(8):64-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
钱永生, 王慧中. 渗透调节物质在作物干旱逆境中的作用[J]. 杭州师范学院学报(自然科学版), 2006,5(6):476-481.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
何进宇, 刘飞杨, 杨佳鹤, 等. 干旱地区水盐胁迫对水稻产量构成及稻谷品质的影响研究[J]. 节水灌溉, 2024(1):33-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
李 娜, 张海林, 李秀芬, 等. 钙在植物盐胁迫中的作用[J]. 生命科学, 2015,27(4):504-508.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
李卓成, 陈环宇, 荣子国, 等. 播种方式和微咸水灌溉对水稻生长、产量和品质的影响[J]. 华北农学报, 2022,37(S1):116-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
杨红梅, 张 荔, 仲子忠. 生物有机肥不同施用量对水稻产量的影响[J]. 现代农业科技, 2012(21):53+58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
刘海艳. 外源调节物质对水稻苗期和孕穗期干旱胁迫的调节效应[D]. 南京: 南京农业大学, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
朱 旺, 张 翔, 耿孝宇, 等. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023,37(6):617-627. (ZHU W, ZHANG X, GENG X Y,et al. Morphological and physiological characteristics of rice roots under combined salinity-drought stress and their
relationships with yield formation[J]. Chinese Journal of Rice Science, 2023,37(6):617-627.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
肖丹丹, 李 军, 邓先亮, 等. 不同品种稻米品质形成对盐胁迫的响应[J]. 核农学报, 2020, 34(8): 1840-1847.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
董士琦, 葛佳琳, 韦还和, 等. 施氮量和密度对盐碱滩涂水稻产量和品质的影响[J]. 核农学报, 2022,36(4):820-828.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
吴 培. 施氮量和直播密度互作对优质食味水稻产量和品质的影响[D]. 江苏扬州: 扬州大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
陆尧.不同时期半深水灌溉对水稻产量和品质的影响[D].江苏扬州:扬州大学, 2024.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |