摘要
为明确参考作物蒸散量(ET0)计算模型在西藏高原灌区的适用性,推荐适宜于气象资料短缺条件下的ET0计算模型,本研究基于满拉、墨达、江北3个灌区的气象站的长系列数据,以FAO推荐的Penman-Monteith(FAO 56 PM)模型计算的ET0为标准,对ET0的5种常用计算模型的适用性进行评价。结果表明:Makkink、Irmark-Allen、FAO 17Penman、Hargreaves-Samani和Priestley-Taylor 5种模型模拟的日尺度ET0变化趋势与FAO 56 PM模型一致,在年际间均呈先增后减的变化规律,且峰值出现在6~7月份,但各模型适用性存在显著差异。Makkink模型的日尺度MAE、RMSE、NSE值分别为0.37 mm/d、0.45 mm/d和0.84,模拟精度及可信度最高;Irmark-Allen模型次之,MAE、RMSE、NSE分别为0.65 mm/d、0.71 mm/d、0.62;Priestley-Taylor模型最差,MAE值最大达4.91 mm/d且NSE值小于0。年尺度下,各模型较FAO 56 PM均存在高估现象,其中FAO 17Penman、Hargreaves-Samani、Priestley-Taylor模型的NSE值介于-3 571.76 ~ -118.00之间,模拟结果不可信;Makkink模型的NSE值最接近于0,模拟结果可信,但模拟过程的误差较大。综合评定,推荐Makkink为西藏高原灌区气象资料短缺条件下的ET0简化模型。
Abstract
In order to clarify the applicability of the calculation model for reference crop evapotranspiration (ET0) in the irrigation district of Tibet Plateau and to recommend the calculation model suitable for meteorological data shortage condition, in this study, based on the long series data of meteorological stations in Manla, Moda and Jiangbei irrigation district, the Penman-Monteith (FAO 56 PM) model recommended by FAO was used as the standard to evaluate the applicability of five commonly used models. The results showed that the variation trends of daily scale ET0 calculated by Makkink, Irmark-Allen, FAO 17 Penman, Hargreaves-Samani and Priestley-Taylor models was all consistent with that of the FAO 56 PM model, and the annual variation pattern of ET0 increased and then decreased, and the peak value appeared from June to July, but the applicability of each model was significantly different. The daily MAE, RMSE, and NSE values of Makkink model were 0.37 mm/d, 0.45 mm/d and 0.84, respectively, with the highest simulation accuracy and reliability. Followed was the Irmark-Allen model with the MAE, RMSE, NSE values of 0.65 mm/d, 0.71 mm/d and 0.62 respectively. The Priestley-Taylor model had the poorest performance, with the MAE value up to 4.91 mm/d and the NSE value less than 0. On the annual scale, the calculation results of each model were overestimated at different degrees, compared with FAO 56 PM model. The NSE values of FAO 17 Penman, Hargreaves-Samani, and Priestley-Taylor models were between -3 571.76 and -118.00, and the simulation results were not credible. The NSE value of Makkink model was the closest to 0, the simulation result was credible, but the error in the simulation process was large. Based on the comprehensive evaluation, the Makkink model was recommended as a simplified model of ET0 under the meteorological data shortage condition in the irrigation district of Tibetan Plateau.
关键词
参考作物蒸散量 /
Penman-Monteith模型 /
适用性研究 /
高原灌区 /
西藏
{{custom_keyword}} /
Key words
reference crop evapotranspiration /
Penman-Monteith model /
applicability study /
irrigation district in Plateau /
Tibet
{{custom_keyword}} /
基金
西藏农牧学院人才引进科研启动项目( RC201601) ; 西藏自治区自然科学基金项目( XZ2019ZRG-50( Z) ) 资助; 西藏农牧学院人才引
进科研启动项目( RC201602) ; 西藏自治区自然科学基金项目( XZ2019ZRG-63) 。
{{custom_fund}}
蒙强 刘静霞 李玉庆 张文贤.
西藏高原灌区参考作物蒸散量模型的适用性研究[J].节水灌溉, 2020(6): 61-67
MENG Qiang, LIU Jing-xia, LI Yu-qing, ZHANG Wen-xian.
Applicability Study of Different Estimating Methods for Reference Crop Evapotranspiration in Irrigation District in Tibet Plateau[J].Water Saving Irrigation, 2020(6): 61-67
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-guidelines for computing crop water requirements[M]. FAO Irrig and Drain Paper No.56, Food and Agriculture Organization of the United Nations, Rome, 1998.
[2]赵璐,梁川,崔宁博,等. 不同ET0计算方法在川中丘陵地区的比较及改进[J]. 农业工程学报,2012,28(24):92-98.
[3]杜加强,舒俭民,刘成程,等. 黄河上游参考作物蒸散量变化特征及其对气候变化的响应[J]. 农业工程学报,2012,28(12):92-100.
[4]焦醒,刘广全,匡尚富,等. Penman-Monteith 模型在森林植被蒸散研究中的应用[J]. 水利学报,2010,41(2):245-252.
[5]樊军,邵明安,王全九. 黄土区参考作物蒸散量多种计算方法的比较研究[J]. 农业工程学报,2008,24(3):98-102.
[6]李志. 参考作物蒸散简易估算方法在黄土高原的适用性[J]. 农业工程学报,2012,28(6):106-111.
[7]余婷,崔宁博,张青雯,等. 中国西北地区日参考作物腾发量模型适用性评价[J]. 排灌机械工程学报,2019,37(8):710-717.
[8]徐冰,汤鹏程,田德龙,等. 西藏典型地区燕麦、饲草青稞需耗水规律与灌溉制度[M]. 北京:科学出版社,2018.
[9]李玉庆. 农田水利学(西藏地区适用)[M]. 北京:中国水利水电出版社,2018:7-11.
[10]周海,尚可政,王式功,等. 日喀则近53年气候变化特征分析[J]. 气象科技,2011,39(2):165-171.
[11]张娜,金建新,佟长福,等. 西藏参考作物蒸散量时空变化特征与影响因素[J]. 干旱区研究,2017,34(5):1 027-1 034.
[12]DOORENBOS J, PRUITT W O. Guidelines for predicting crop water requirements[M]. Irrigation and Drainage Paper 24, (1st and 2nd ed),Food and Agriculture Organization of the United Nations, Rome,1975.
[13]罗红英,李丹,崔远来,等. 西藏农业区A°ngstrm公式参数选取研究[J]. 农业工程学报,2019,35(3):149-155.
[14]罗玉峰,李思,彭世彰,等. 基于气温预报和HS公式的参考作物腾发量预报[J]. 排灌机械工程学报,2013,31(11):987-992.
[15]MAKKINK G F. Testing the Penman formula by means of lysimeters[J]. Journal of Institute of Water Engineers,1957,11(3):277-288.
[16]PRIESTLEY C H B, TAYLOR R J. On the assessment of surface heat flux and evaporation using largescale parameters[J]. Monthly Weather Review,1972,100:81-92.
[17]李晨,崔宁博,冯禹,等. 四川省不同区域参考作物蒸散量计算方法的适用性评价[J]. 农业工程学报,2016,32(4):127-134,316.
[18]黄彩霞,赵德明,王保福. 甘肃中东部半干旱区参考作物蒸散量多种计算方法的比较研究[J]. 干旱地区农业研究,2018,36(6):41-47.
[19]HELGE B. Sensitivity analysis of 18 different potential evapotranspiration models to observed climatic change at German climate stations[J]. Climatic Change,2011,104:729-753.
[20]胡庆芳,杨大文,王银堂,等. Hargreaves公式的全局校正及适用性评价[J]. 水科学进展,2011,22(2):160-167.
[21]曹金峰,李玉中,刘晓英,等. 四种参考作物蒸散量综合法的比较[J]. 中国农业气象,2015,36(4):428-436.
[22]刘晓英,李玉中,钟秀丽,等. 基于称重式蒸渗仪实测日值评价16种参考作物蒸散量(ET0)模型[J]. 中国农业气象,2017,38(5):278-291.
[23]朱潇枭,方朝阳,罗玉峰. 3种ET0计算方法在海南省的适用性比较[J]. 节水灌溉,2018(2):103-105,112.
[24]尹春艳,陈小兵,刘虎,等. 黄河三角洲参考作物腾发量计算方法适宜性研究[J]. 灌溉排水学报,2017,36(6):36-41,108.
[25]汤鹏程,何蒙,苗澍,等. 不同ET0计算方法在内蒙古东部地区适用性比较[J]. 干旱地区农业研究,2016,34(1):38-42,86.