为了量化水氮胁迫对西北旱区制种玉米干物质分配与氮分配的影响,建立水氮胁迫条件下器官间干物质与氮分配模型。本试验设置3种灌水水平,分别是充分灌溉(W1)、轻度水分胁迫(W0.75)和重度水分胁迫(W0.5),并设置3种施氮水平,分别是150 kg/hm2(N150)、75 kg/hm2(N75)和0 kg/hm2(N0)。分析了水氮胁迫对器官间干物质与氮分配系数的影响,构建了干物质与氮分配动态模型。试验结果表明:茎分配系数呈单峰曲线,茎氮分配系数随生育期推进逐渐下降;叶分配系数与叶氮分配系数均呈下降趋势;穗分配系数与穗氮分配系数逐渐增加。总体上,茎分配系数大于茎氮分配系数,叶分配系数小于叶氮分配系数,穗分配系数小于穗氮分配系数。氮胁迫对制种玉米干物质分配与氮分配关系无显著影响。水分胁迫提高茎分配系数与氮分配系数;水分胁迫条件下叶与穗分配系数与叶氮分配系数均显著低于充分灌溉处理。叶分配系数与氮分配系数随着有效积温呈Logistic函数变化;穗干物质分配系数随有效积温呈指数递减变化。模型能够较为准确的模拟整个生育期的分配系数动态变化规律。
Abstract
In order to quantify the effects of water and nitrogen stress on dry matter and nitrogen accumulation and distribution of seed maize in northwest arid region of China and to establish a model of dry matter and nitrogen distribution between organs under water and nitrogen stress condition, in this experiment, three irrigation levels were set, namely, full irrigation (W1), mild water stress (W0.75) and severe water stress (W0.5), and three nitrogen application levels were set, namely, 150 kg/hm2(N150), 75 kg/hm2(N75) and 0 kg/hm2(N0), the effects of water and nitrogen stress on dry matter and nitrogen distribution coefficient between organs were analyzed, and a dynamic model of dry matter and nitrogen distribution was established. The results showed that the distribution coefficient of stem showed a single peak curve and the distribution coefficient of stem nitrogen decreased with the growth period. Leaf distribution coefficient and leaf nitrogen distribution coefficient both showed a downward trend. The ear distribution coefficient and the ear nitrogen distribution coefficient increased gradually. In general, the stem distribution coefficient was greater than the stem nitrogen distribution coefficient, the leaf distribution coefficient was less than the leaf nitrogen distribution coefficient, and the ear distribution coefficient was less than the ear nitrogen distribution coefficient. Nitrogen stress had no significant effect on dry matter distribution and nitrogen distribution of seed maize. Water stress increased the distribution coefficient and nitrogen distribution coefficient of stem. The leaf and ear distribution coefficients and leaf nitrogen distribution coefficients under water stress were significantly lower than those under full irrigation. The distribution coefficients of leaf and nitrogen were changed by Logistic function with the effective accumulated temperature. The grain dry matter distribution coefficient decreased exponentially with the effective accumulated temperature. The model can accurately simulate the dynamic change of distribution coefficient during the whole growth period.
关键词
制种玉米 /
水氮胁迫 /
干物质分配系数 /
氮分配系数 /
西北干旱区 /
动态模型
{{custom_keyword}} /
Key words
hybrid seed maize;water and nitrogen stress;dry matter distribution coefficient /
nitrogen distribution coefficient;northwest arid region;dynamic model
{{custom_keyword}} /
基金
国家自然科学基金项目( 51809216) ; 中央高校基础研究经费( 2452017203) ; 陕西省自然科学基础研究计划( 2019JQ-646) 。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]李合生.植物生理学[M].北京:高等教育出版社,2012:87.
[2]刘铁梅,曹卫星,罗卫红,等.小麦器官间干物质分配动态的定量模拟[J].麦类作物学报,2001(1):25-31.
[3]MARCELIS L F M. Simulation of biomass allocation in greenhouse crops: A review[J]. Acta Horticulturae, 1993,328:49-68.
[4]LEVIN S, MOONEY H, FIELD C. The dependence of plant root: Shoot ratios on internal nitrogen concentration[J]. Ann Bot, 1989,64(1):71-75.
[5]邹薇. 基于过程的大麦生长发育模拟模型[D]. 南京: 南京农业大学, 2009.
[6]HEUVELINK E. Effect of fruit load on dry matter Partitioning in tomato[J]. Seientia Hortieulturae,1997,69(1):51-59.
[7]刘铁梅, 曹卫星, 罗卫红, 等. 小麦器官间干物质分配动态的定量模拟[J]. 麦类作物学报, 2001(1):25-31.
[8]徐寿军, 杨恒山, 郑根昌, 等. 大麦植株干物质分配模型[J]. 麦类作物学报, 2010,30(4):735-740.
[9]SOUFIZADEH S, MUNARO E, MCLEAN G, et al. Modelling the nitrogen dynamics of maize crops - Enhancing the APSIM maize model[J]. European Journal of Agronomy, 2018,100:118-131.
[10]NASIELSKI J, EARL H, DEEN B. Luxury Vegetative Nitrogen Uptake in Maize Buffers Grain Yield Under Post-silking Water and Nitrogen Stress: A Mechanistic Understanding[J]. Frontiers in plant science, 2019,10:1-14.
[11]王宜伦, 李潮海, 何萍, 等. 超高产夏玉米养分限制因子及养分吸收积累规律研究[J].植物营养与肥料学报, 2010,16(3):559-566.
[12]HUI R, SHAOZHONG K, FUSHENG L, et al. Effects of irrigation and nitrogen management on hybrid maize seed production in north-west China[J]. Frontiers of Agricultural Science and Engineering, 2016,3(1):55-64.
[13]漆栋良, 胡田田, 宋雪. 交替隔沟灌溉制度对制种玉米耗水规律和产量的影响[J]. 农业工程学报, 2019,35(14):64-70.
[14]YAO H, ZHANG Y, YI X, et al. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton[J]. Field Crops Research, 2015,184(7):39-49.
[15]OOSTEROM E V, BORRELL A K, CHAPMAN S K, et al. Functional dynamics of the nitrogen balance of sorghum: I. N demand of vegetative plant parts[J]. Field Crops Research, 2009,115(1):19-28.