
中贫营养湖泊叶绿素a预测模型探讨
刘宇, 朱丹瑶
中贫营养湖泊叶绿素a预测模型探讨
A Model for Predicting Chlorophyll a in a Medium-low Nutrient Lake
在内陆水体水质遥感监测中,无论采用哪种方法,其模型都具有一定的局限性。不同营养状况的水域,水体光学特性的差异会引起模型适用性不同。目前,大多数学者研究范围主要集中在富营养状态水域,对于中/贫营养状态水域研究较少。为建立适合镜泊湖的叶绿素a水质监测遥感模型,结合2015年9月和2018年7月实测光谱数据,对镜泊湖不同叶绿素a浓度反演模型的精度进行了评价。结果显示,在所构建的8种模型中,三波段模型效果最佳,模型决定系数R 2值为0.79,均方根误差RMSE (Root Mean Square Error)为0.34 μg/L,平均相对误差MAPE (Mean Absolute Percentage Error)为20.6%。在此基础上,通过对比分析不同模型的适用性,得到如下结论:对于叶绿素a浓度跨度较小的镜泊湖水域,半经验半分析模型建模精度优于传统的经验模型;与三波段模型对比,在低叶绿素浓度及低浑浊水体中,增加近红外波段的四波段模型也可能带来一定的不确定性,从而降低反演精度。
In the remote sensing monitoring of inland water quality, no matter which method is used, the model has some limitations. The applicability of the model is different due to the different optical characteristics of the water with different nutritional status. At present, the research scope of most scholars is mainly focused on eutrophication state waters, and there are few studies on intermediate/poor nutrition state waters. In order to establish a remote sensing model suitable for chlorophyll a water quality monitoring in Jingpo Lake, the accuracy of inversion models for different chlorophyll a concentrations in Jingpo Lake was evaluated based on the measured spectral data in September 2015 and July 2018.The results showed that the three-band model had the best effect among the eight models, with the R 2 value of 0.79 and the Root Mean Square Error (RMSE) of 0.34 μg/L. Mean Absolute Percentage Error (MAPE) was 20.6%. On this basis, through comparative analysis of the applicability of different models, the following conclusions were drawn: for the chlorophyll a concentration of Jingpo Lake with a smaller span, the modeling accuracy of the semi-empirical and semi-analytical model is better than the traditional empirical model. Compared with the three-band model, in low chlorophyll concentration and low nutrition water, the four-band model with the addition of near-infrared band may also bring some uncertainty, thus reducing the accuracy of inversion.
镜泊湖 / 叶绿素a预测模型 / 反演模型 / 模型比较 / 中贫营养 / 遥感反演 / 高光谱 {{custom_keyword}} /
Jinpo Lake / forecast model of chlorophyll-a / inversion model / model comparison / medium-low nutrition / remote inversion / high spectrum {{custom_keyword}} /
表1 不同方法叶绿素 a反演模型Tab.1 Chlorophyll-a retrieval model in different methods |
反演模型 | 变量 | 模型方程 | R 2值 |
---|---|---|---|
波段比值 | | y=609.77 x 2-1 263.7 x+ 655.93 | 0.74 |
三波段 | | y=2 864.3 x 2-107.43 x+ 2.14 | 0.79 |
四波段 | | y = 246.62 x 2 - 25.58 x + 1.80 | 0.69 |
NDCI | | y = 2 754.8 x 2 - 98.12 x + 2.06 | 0.74 |
WCI | | y = 2.19 e-0.06 x | 0.51 |
荧光峰位置 | λ peak | y = 10-30 e0.1 x | 0.66 |
荧光峰高度 | FLH | y = 0.53 e210.61 x | 0.63 |
荧光峰面积 | NPA | y = 0.50 e5.59 x | 0.60 |
1 |
郭一洋,朱利,吴传庆,等.基于水面反射率光谱分类的太湖藻蓝蛋白浓度反演[J].环境科学学报,2016,36(8):2 905-2 910.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
赵文宇,姜亮亮,焦键,等.基于Landsat8数据的东道海子叶绿素a的遥感反演和监测研究[J].新疆环境保护,2017,39(3):28-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
宋月君,莫明浩,汪邦稳.基于神经网络模型的水源地水质参数反演研究[J].中国农村水利水电,2011(2):98-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
冼翠玲,张艳军,张明琴,等.基于高分辨率多光谱影像的温瑞塘河水质反演模型研究[J]. 中国农村水利水电, 2017(3): 90-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王小平,张飞,GhulamAbduwasit,等.艾比湖流域地表水水质指标与水体指数关系研究[J]. 环境科学学报,2017,37(3):900-909.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
安如,刘影影,曲春梅,等.NDCI法Ⅱ类水体叶绿素a浓度高光谱遥感数据估算[J].湖泊科学,2013,25(3):437-444.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
冯驰,金琦,王艳楠,等.基于GOCI影像和水体光学分类的内陆湖泊叶绿素a浓度遥感估算[J].环境科学,2015,36(5):1 557-1 564.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
马万栋,王桥,吴传庆,等.基于反射峰面积的水体叶绿素遥感反演模拟研究[J].地球信息科学学报,2014,16(6):965-970.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李苗,臧淑英,吴长山.基于TM影像的克钦湖叶绿素a浓度反演[J].农业环境科学学报,2012,31(12):2 473-2 479.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
马 驰.松嫩平原水体中的叶绿素a和悬浮物含量反演研究[J].湿地科学,2017,15(2): 173-178.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J].遥感学报,2004(1):37-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
郭宇龙,李云梅,李渊,等.一种基于GOCI数据的叶绿素a浓度三波段估算模型[J].环境科学,2015,36(9):3 175-3 185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
毕顺,李云梅,吕恒,等.基于OLCI数据的洱海叶绿素a浓度估算[J].湖泊科学,2018,30(3):701-712.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王金梁,秦其明,李军,等.基于高光谱数据的水体叶绿素a指数反演模型的建立[J].农业工程学报,2014,30(3):128-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
孙昊,周林飞. 石佛寺水库叶绿素a浓度高光谱遥感反演[J].节水灌溉,2019(3):67-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
李云亮,张运林,李俊生,等.不同方法估算太湖叶绿素a浓度对比研究[J].环境科学,2009,30(3):680-686.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
宋挺,周文鳞,刘军志,等.利用高光谱反演模型评估太湖水体叶绿素a浓度分布[J].环境科学学报,2017,37(3):888-899.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |