
不同灌溉量与施氮量下稻田裸地氮素运移规律
马艳宝, 童菊秀, 马越, 刘聪
不同灌溉量与施氮量下稻田裸地氮素运移规律
Study on Nitrogen Transport in Bare Paddy Field Under Different Irrigation Amounts and Nitrogen Fertilizer Application Rates
为了优化水稻田的灌溉与氮肥管理,基于不同灌溉水量与氮肥处理条件,在5块农田中开展了野外裸地氮素运移试验,分析了不同田块地表水与土壤水中三氮浓度随时间的变化规律。结果表明铵态氮(NH4 +-N)在每次施氮肥后浓度会迅速增高,随后降低;硝态氮(NO3 --N)在施氮肥及减少灌溉量后浓度会有明显的增高,在每次施氮肥后3 d内各田块地表水NO3 --N浓度均低于NH4 +-N浓度,地表水NO3 --N浓度峰值产生时间也滞后于NH4 +-N;晒田前,土壤水总氮(TN)与土壤水NH4 +-N浓度随时间的变化规律相似,NH4 +-N是TN的主要成分;晒田后,地表水与土壤水TN与NO3 --N浓度随时间的变化规律相似,NO3 --N是TN的主要成分。在田1~田5中,田4的水肥模式(施氮量429.3 kg/hm2,灌溉量8 587.5 m3/ hm2,追肥比6∶4)比较适合当地水稻的生长,不仅节约了资源还降低了对环境的污染。此研究结果可为当地节水灌溉与农业面源污染防治提供参考价值。
In order to optimize the irrigation and nitrogen fertilizer management in paddy field, field experiments were conducted in five bare farmlands to explore the nitrogen transport under conditions of different irrigation amount and nitrogen fertilizer application rates. NH4 +-N, NO3 --N and TN concentration in surface water and soil water in each bare farmland were analyzed. The study results showed that the concentration of NH4 +-N increased rapidly after each application of nitrogen fertilizer and then decreased. NO3 --N concentration increased significantly after the reduction of nitrogen fertilizer application and irrigation amount. Within 3 days after each application of nitrogen fertilizer, the concentration of NO3 --N in surface water was lower than that of NH4 +-N and the peak generation time of NO3 --N concentration in surface water lagged behind that of NH4 +-N concentration. Before the field drying, TN and NH4 +-N concentrations in soil water had similar variations over time, and NH4 +-N was the main component of TN. After the field drying, TN and NO3 --N concentrations in surface water and soil water varied similarly over time, and NO3 --N was the main component of TN. In the test fields 1~5, the irrigation and nitrogen fertilizer mode of the field 4, with fertilizer rate of 429.3 kg / hm2, irrigation amount of 8 587.5 m3/ hm2 and topdressing ratio of 6∶4, was more suitable for the local rice growth, which not only saved resources but also reduced environmental pollution. This study results can provide references for water-saving irrigation and non-point source pollution prevention.
地表水与土壤水 / 氮素浓度 / 灌溉量 / 施氮量 {{custom_keyword}} /
surface water and soil water / nitrogen concentration / irrigation amount / nitrogen fertilizer application rate {{custom_keyword}} /
表1 试验区土壤的基本理化性质 |
土壤深度/cm | 粒级分数/% | 饱和含水率/(cm3·cm-3) | 初始铵态氮/(mg·kg-1) | 初始硝态氮/(mg·kg-1) | 初始总氮/(g·kg-1) | pH值 | 土壤容重/(g·cm-3) | ||
---|---|---|---|---|---|---|---|---|---|
砂粒2.000~0.050 mm | 粉粒0.050~0.002 mm | 黏粒 <0.002 mm | |||||||
0~10 | 5.6 | 56.5 | 37.9 | 0.492 4 | 8.68 | 10.80 | 0.886 | 6.83 | 1.389 |
10~20 | 26.8 | 42.0 | 31.2 | 0.444 8 | 8.00 | 7.75 | 0.646 | 6.87 | 1.501 |
20~30 | 32.9 | 41.4 | 25.6 | 0.425 0 | 6.67 | 6.80 | 0.468 | 6.86 | 1.688 |
图1 水稻田总体布置图(单位:m) |
表2 各田块施氮量及灌溉总量 |
田块 | 施氮总量/(kg· hm-2) | 第一次施氮量/ (kg· hm-2) | 第二次施氮量/ (kg · hm-2) | 施肥比 | 灌溉量/(m3· hm-2) |
---|---|---|---|---|---|
田1 | 613.2 | 367.95 | 245.25 | 6∶4 | 11 139.0 |
田2 | 429.3 | 343.35 | 85.95 | 8∶2 | 11 139.0 |
田3 | 429.3 | 257.55 | 171.75 | 6∶4 | 11 139.0 |
田4 | 429.3 | 257.55 | 171.75 | 6∶4 | 8 587.5 |
田5 | 613.2 | 367.95 | 245.25 | 6∶4 | 8 587.5 |
表3 水样检测方法 |
检测指标 | 检测方法 | 分析仪器 |
---|---|---|
NH4 +-N | 纳氏试剂光度法 | AOE UV-1000 分光光度计 |
NO3 --N | 紫外分光光度法 | AOE UV-1000 分光光度计 |
TN | 过硫酸钾氧化紫外分光光度法 | AOE UV-1000 分光光度计 华泰不锈钢压力蒸汽灭菌器 |
1 |
杜为研,唐杉,汪洪,我国有机肥资源及产业发展现状 [J]. 中国土壤与肥料,2020(3): 210-219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
荀梓莹,朱家明,陈倩 .2012-2016年全国水资源现状及发展预测的实证分析[J].淮阴师范学院学报(自然科学版),2019,18(2):104-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
孙仕军,朱振闯,李娜,等. 中国农业节水技术标准化建设现状与发展对策[J]. 排灌机械工程学报,2018,36(10):990-994.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张忠学,陈鹏,聂堂哲,等 .不同水氮调控模式对稻田土壤氮素分布与有效性的影响[J].农业机械学报,2018,49(11):210-219.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
崔远来,李远华,吕国安,等 .不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展, 2004(3):280-285.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
肖雪玉,朱文博,杨丹,等. 施用控释氮肥对早稻田面水氮素动态变化和水稻产量的影响[J]. 生态环境学报,2018, 27(12): 2 252-2 257.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
曹睿哲,高世凯. 不同生育期旱涝交替胁迫对水稻产量及构成的影响[J]. 排灌机械工程学报,2019,37(7): 639-644.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
吴伟明,宋祥甫,孙宗修,等 .不同类型水稻的根系分布特征比较[J].中国水稻科学,2001(4):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
吕海霞. 影响土壤反硝化作用的因素[J].河南农业,2015(17):15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王晓琪,姚媛媛,陈宝成,等. 淹水条件硝态氮和铵态氮配施对水稻生长与土壤养分的影响[J]. 土壤,2020,52(2):254-261.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |