
泰莱盆地地下水化学特征分类及成因分析
田明刚, 徐建, 赵耘, 郑梦琪, 徐秋林
泰莱盆地地下水化学特征分类及成因分析
Classification and Cause Analysis of Groundwater Chemical Characteristics in Tailai Basin
泰莱盆地地下水类型丰富,水化学特征复杂,传统的水化学方法不适合大量数据的客观归类研究,复杂特征的地下水成因缺少全面认知。利用聚类分析对大量枯水期地下水数据分成ABC三大组,再细分成10小组,并结合含水层岩性分析水化学特征。利用Gibbs图分析得出三组地下水主要受岩石控制,同时也受不同程度的蒸发作用。利用离子比值端元图得出ABC三组分别以溶滤硅酸岩、硅酸盐及碳酸盐、硅酸盐及蒸发岩控制为主。最后通过质量平衡模拟10小组类型水中多种矿物质成分的溶解量,发现人类活动对地下水Cl-含量影响较大。研究加深了研究区地下水复杂水化学特征分析及成因的认识。
The Taylor Basin has rich types of groundwater and complex hydro-chemical characteristics. Traditional hydro-chemical methods are not suitable for the objective classification of large amounts of data. The formation of complex characteristics of groundwater lacks a comprehensive understanding. This paper used cluster analysis to divide a large amount of groundwater data during low-water periods into three major groups,ABC,and then subdivided into 10 groups, combined with the lithology of the aquifer to analyze the water chemical characteristics. Through using the Gibbs diagram analysis,it was concluded that the three groups of groundwater were mainly controlled by rocks,but also subjected to different degrees of evaporation. Through using the ion ratio end-member diagram,it was concluded that the three groups of ABC were mainly controlled by leaching silicate,silicate and carbonate,silicate and evaporite. Finally,the mass balance was used to simulate the dissolution of various mineral components in 10 groups of water,and it was found that human activities had a greater impact on the Cl- content of groundwater. This study deepens the understanding of the complex hydro-chemical characteristics and causes of groundwater in the study area.
泰莱盆地 / 水化学类型 / 聚类分析 / 水岩作用 / 质量平衡 {{custom_keyword}} /
Taylor Basin / hydro-chemical types / cluster analysis / water-rock interaction / mass balance {{custom_keyword}} /
图2 聚类结果树状图及化学成分Stiff图Fig.2 Clustering result dendrogram and chemical composition Stiff diagram |
表1 A、B、C三组质量平衡计算 (mmol/L)Tab.1 Mass balance calculation of A, B, C three groups |
组分 | A组 | B组 | C组 | 降水 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | B1 | B2 | B3 | B4 | C1 | C2 | C3 | ||
Na+ | 1.05 | 1.45 | 1.42 | 0.89 | 0.65 | 1.37 | 4.00 | 4.02 | 2.51 | 0.04 |
Ca2+ | 1.65 | 1.88 | 3.40 | 3.69 | 2.98 | 2.74 | 4.41 | 7.48 | 5.24 | 0.06 |
Mg2+ | 0.56 | 0.61 | 1.12 | 1.44 | 0.75 | 0.94 | 1.47 | 2.07 | 1.38 | 0.02 |
Cl- | 0.84 | 1.09 | 1.29 | 1.34 | 0.85 | 1.63 | 4.96 | 5.62 | 4.01 | 0.03 |
SO4 2- | 0.82 | 1.23 | 1.21 | 2.03 | 0.98 | 1.01 | 2.52 | 5.33 | 1.94 | 0.06 |
HCO3 - | 2.31 | 2.06 | 5.55 | 4.32 | 4.27 | 4.03 | 4.17 | 5.11 | 5.47 | 0.16 |
反应性矿物 | 化学计量数 | |||||||||
Na+ | Ca2+ | Mg2+ | Cl- | SO4 2- | HCO3 - | |||||
方解石 | 1 | 1 | ||||||||
白云石 | 1 | 1 | 2 | |||||||
CO2 | 1 | |||||||||
岩盐 | 1 | 1 | ||||||||
石膏 | 1 | 1 | ||||||||
芒硝 | 2 | 1 | ||||||||
污染Cl | 1 | |||||||||
质量平衡方程 | ||||||||||
A | y Na=2 x 芒硝+x 岩盐 | y Ca=x 方解石+x 白云石+x 石膏 | y Mg=x 白云岩 | |||||||
y Cl=x 岩盐 | y SO | y HCO | ||||||||
B、C | y Na=2 x 芒硝+x 岩盐 | y Ca=x 方解石+x 白云石+x 石膏 | y Mg=x 白云岩 | |||||||
y Cl=x 其他Cl+x 岩盐 | y SO | y HCO | ||||||||
x 石膏/x 芒硝=6 |
表2 矿物质溶解计算结果 (mmol/L)Tab.2 Calculation results of mineral dissolution |
编号 | 方解石 | 白云石 | CO2 | 盐岩 | 石膏 | 芒硝 | 其他Cl |
---|---|---|---|---|---|---|---|
A1 | 0.40 | 0.54 | 0.68 | 0.81 | 0.66 | 0.10 | |
A2 | 0.24 | 0.59 | 0.49 | 1.05 | 1.00 | 0.18 | |
B1 | 1.26 | 1.10 | 1.93 | 1.05 | 0.99 | 0.17 | 0.21 |
B2 | 0.52 | 1.42 | 0.80 | 0.29 | 1.69 | 0.28 | 1.02 |
B3 | 1.40 | 0.73 | 1.25 | 0.35 | 0.80 | 0.13 | 0.46 |
B4 | 0.95 | 0.92 | 1.07 | 1.06 | 0.82 | 0.14 | 0.54 |
C1 | 0.80 | 1.45 | 0.33 | 3.26 | 2.11 | 0.35 | 1.66 |
C2 | 0.86 | 2.05 | 0 | 2.47 | 4.52 | 0.75 | 3.11 |
C3 | 2.20 | 1.36 | 0.39 | 1.93 | 1.62 | 0.27 | 2.04 |
1 |
沈照理,王焰新 .水-岩相互作用研究的回顾与展望[J].地球科学,2002,27(2):127-133.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
文冬光,沈照理,钟佐燊,等 .地球化学模拟及其在水文地质中的应用[J].地质科技情报,1995,14(1):99-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张人权,梁杏,靳孟贵,等 .当代水文地质学发展趋势与对策[J].水文地质工程地质,2005,32(1):51-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李学礼,孙占学,刘金辉 .水文地球化学[M].北京:原子能出版社,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
陆瀛. 泰莱盆地地下水化学特征及演化规律研究[D].山东青岛:山东科技大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
李贵恒,冯建国,鲁统民,等. 泰莱盆地地下水水化学特征及水质评价[J]. 水电能源科学, 2019,37 (4):58-61,127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
冯建国,赫明浩,李贵恒,等. 泰莱盆地孔隙水水化学特征及其控制因素分析[J]. 环境化学,2019, 38(11):194-200.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
陈晨,高宗军, 李伟,等. 泰莱盆地地下水化学特征及其控制因素[J]. 环境化学,2019,38(6):137-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
孙金凤,高宗军,冯建国,等. 泰莱盆地水环境同位素分布特征及其意义[J]. 水电能源科学,2019(12):30-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
周金龙, 董新光, 兰卫松. 分步聚类分析方法划分地下水水化学类型[J]. 新疆农业大学学报,2003,26(2):72-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
窦妍.鄂尔多斯盆地北部白垩系地下水水文地球化学演化及循环规律研究[D].西安:长安大学,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李学礼,孙占学,刘金辉. 水文地球化学[M].北京:原子能出版社,1988.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
曾妍妍,周金龙,贾瑞亮,等 .新疆祁漫塔格地区地表水水化学特征及成因分析[J].干旱区资源与环境,2017,31(6):64-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |