改进的入侵杂草优化算法在泰斯模型中的应用

邱云翔 刘国东 王亮 李世钰

PDF(332 KB)
中国农村水利水电 ›› 2017 ›› (1) : 118-121.
水文水资源

改进的入侵杂草优化算法在泰斯模型中的应用

  • 邱云翔1,2,刘国东1,2,王亮1,2,李世钰1,2
作者信息 +

The Application of Modified IWO Algorithm to Theis's Model

  • QIU Yun-xiang1,2 ,LIU Guo-dong1,2 ,WANG Liang1,2 ,LI Shi-yu1,2
Author information +
稿件信息 +

摘要

智能优化算法应用于泰斯模型时,需要预估待求参数的搜索范围。为降低预估难度,将具备广度搜索优势的入侵杂草优化算法引入到泰斯模型中,通过分析入侵杂草优化算法在广度搜索空间中运用泰斯公式的局限性,变算法标准差的静态设置为动态调整,提出并构建改进的入侵杂草优化算法运用泰斯公式模型。应用该模型处理三个不同尺度非稳定流抽水试验。研究结果表明:改进的入侵杂草优化算法能在广度搜索空间中高效运用泰斯公式反演出接近实际的导水系数和贮水系数。

Abstract

It is necessary to estimate the search range of parameters,when intelligent optimization algorithm is applied to Theis's model. In order to reduce the difficulty in estimating the search range,IWO algorithm is applied,which has the advantage of wide search for Theis's model. Through analyzing the limitation of using Theis's equation with the application of IWO algorithm in the case of wide search area,the static settings of standard deviation is changed to dynamic modulation,the model of using Theis's equation with the application of the modified IWO algorithm is proposed. This model is applied to deal with three different scale unsteady flow pumping tests. The results prove that using Theis's equation with the application of the modified IWO algorithm in the case of wide search area can efficiently obtain the transmissivity and storativity,which are close to the actual values.

关键词

入侵杂草优化算法 / 泰斯公式 / 水文地质参数 / 导水系数 / 贮水系数

Key words

IWO algorithm / Theis's equation / hydrogeology parameters / transmissivity / storativity

引用本文

导出引用
邱云翔 刘国东 王亮 李世钰. 改进的入侵杂草优化算法在泰斯模型中的应用[J].中国农村水利水电, 2017(1): 118-121
QIU Yun-xiang , LIU Guo-dong, WANG Liang, LI Shi-yu. The Application of Modified IWO Algorithm to Theis's Model[J].China Rural Water and Hydropower, 2017(1): 118-121

参考文献

[1] 齐学斌.非稳定流抽水试验参数计算的迭代算法及计算机模拟[J].水利学报,1995,( 7) : 67-71,66.
[2] 朱春龙.非稳定流抽水试验参数计算的优化算法[J].水科学进展,1999,10( 1) : 75-77.
[3] 霍小虎,黄国如.遗传算法在水文地质参数确定中的应用[J].地下水,2001,23( 4) : 195-197.
[4] 刘立才,陈鸿汉,张达政.梯度法在水文地质参数估值中的应用[J].水文地质工程地质,2003,( 3) : 39-41.
[5] 郭建青,李 彦,王洪胜,等.粒子群优化算法在确定含水层参数中的应用[J].中国农村水利水电,2008,( 4) : 4-7.
[6] 叶 咸,许 模,廖晓超,等.遗传算法优化 BP 神经网络在求解水文地质参数中的应用[J].水电能源科学,2013,31( 12) : 55- 57,65.
[7] A R Mehrabian,C.Lucas.A novel numerical optimization algorithm inspired from weed colonization[J].Ecological Informatics,2006,1( 4) :355-366.
[8] 彭 斌,胡常安,赵荣珍.基于混合杂草算法的神经网络优化策略[J].振动、测试与诊断,2013,33( 4) : 634-639,725.
[9] 刘 燕,焦永昌,张亚明,等.混合入侵杂草算法用于阵列天线波束赋形[J].西安电子科技大学学报( 自然科学版) ,2014,41( 4) :94-99.
[10] 周金虎.基于入侵杂草算法的数据挖掘聚类算法研究[D].兰州:兰州理工大学,2014.
[11] Rajesh Srivastava.Implications of using approximate expressions forwell function[J]. Journal of Irrigation and Drainage Engineering.1995,121( 6) : 459-462.
[12] 薛禹群,吴吉春.地下水动力学[M].3 版. 北京: 地质出版社,2010.
[13] 曹万金.地下水资源计算与评价[M].北京: 水利电力出版社,1987: 97-109.
[14] U S Department of the Interior( USDI) .Groundwater Manual[M].Bureau of Reclamation.Supt.of Documents,U S Govt.Printing Office,Washington,D C,1977: 119.

PDF(332 KB)

访问

引用

详细情况

段落导航
相关文章

/