Green-Ampt入渗模型国外研究进展

朱昊宇 段晓辉

PDF(360 KB)
中国农村水利水电 ›› 2017 ›› (10) : 6-12.
水文水资源

Green-Ampt入渗模型国外研究进展

  • 朱昊宇1,段晓辉2
作者信息 +

Foreign Research Progress of Green-Ampt Soil Water Infiltration Model

Author information +
稿件信息 +

摘要

土壤水分入渗过程是土壤水分运移形式之一,对土壤养分和盐分运移及作物根系和微生物活性均有较大影响。目前描述土壤水分入渗过程的模型主要包括:Kostiakov模型、Philip模型、Green-Ampt模型等,Green-Ampt入渗模型表达式简单、涉及参数较少,具有一定的土壤物理基础,是当前使用最广的土壤水分入渗模型。国外关于Green-Ampt入渗模型研究很多,本文对Green-Ampt模型国外研究现状进行系统地总结。从Green-Ampt入渗模型的基本表达式出发,总结了该模型优缺点及涉及参数(饱和导水率Ks、湿润锋面吸力Sf、土壤水分入渗率i(t)等)的改进算法;综述了Green-Ampt入渗模型的国外应用现状;并对比分析了Kostiakov模型、Philip模型、Green-Ampt模型等,Green-Ampt入渗模型。基于Green-Ampt的国外研究现状,为国内该领域的研究指明方向。

Abstract

Soil water infiltration process is one of the forms of soil moisture migration, which has a great influence on soil microbial activity, the movement of soil nutrients and salt and growth of crop root. At present, the soil water infiltration model simulated the process of soil water infiltration mainly includes: Kostiakov model, Philip model, Green-Ampt model. such as Green-Ampt infiltration model expressed simply and involves less parameters, and has a certain soil physical basis. Therefore, Green-Ampt infiltration model is currently the most widely used model of soil water infiltration. Foreign researches on Green-Ampt infiltration model were numerous. In this paper, we systematically summary and analyze the advances in the research on the Green-Ampt infiltration model. Based on the basic expression of Green-Ampt infiltration model, we summary the advantages and disadvantages of the Green-Ampt infiltration model and its involved parameters improved algorithm, such as saturated hydraulic conductivity Ks, wetting front suction Sf, soil water infiltration rate i (t) and so on. In addition, we summarized the foreign application status of Green-Ampt infiltration model. Confronted with the foreign research status of Green-Ampt model, this paper pointed out the research direction of the Green-Ampt model in domestic.

引用本文

导出引用
朱昊宇 段晓辉. Green-Ampt入渗模型国外研究进展[J].中国农村水利水电, 2017(10): 6-12
. Foreign Research Progress of Green-Ampt Soil Water Infiltration Model[J].China Rural Water and Hydropower, 2017(10): 6-12

参考文献

[1] Bharati L, Lee K H, Isenhart T M, et al. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA[J]. Agroforestry systems, 2002, 56(3): 249-257.
[2] 李雪转, 樊贵盛. 土壤有机质含量对土壤入渗能力及参数影响的试验研究[J]. 农业工程学报, 2006, 22(3): 188-190.
[3] 辛继红, 高红贝, 邵明安. 土壤温度对土壤水分入渗的影响[J]. 水土保持学报, 2009, 23(3): 217-220.
[4] 潘云, 吕殿青. 土壤容重对土壤水分入渗特性影响研究[J]. 灌溉排水學報, 2009, 28(2): 59-61.
[5] 陈洪松, 邵明安, 王克林. 土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J]. 农业工程学报, 2006, 22(1): 44-47.
[6] Green W H, Ampt G A. Studies on Soil Phyics[J]. The Journal of Agricultural Science, 1911, 4(01): 1-24.
[7] 韩用德, 罗毅, 于强, 等. 非均匀土壤剖面的 Green—Ampt 模型[J]. 中国生态农业学报, 2001, 9(1): 31-33.
[8] 王春颖, 毛晓敏, 赵兵. 层状夹砂土柱室内积水入渗试验及模拟[J]. 农业工程学报, 2010, 26(11): 61-67.
[9] 彭振阳, 黄介生, 伍靖伟, 等. 基于分层假设的 Green-Ampt 模型改进[J]. 水科学进展, 2012, 23(1): 59-66.
[10] 李卓, 吴普特, 冯浩, 等. 不同粘粒含量土壤水分入渗能力模拟试验研究[J]. 乾旱地區農業研究, 2009, 27(3): 71-77.
[11] 赵守珍, 樊贵盛. 非充分供水条件下供水强度对土壤水分入渗的影响研究[J]. 太原理工大学学报 2009, 40(1): 67-70.
[12] 王全九, 邵明安. 浑水入渗机制及模拟模型研究[J]. 农业工程学报, 1999, 15(1): 135-138.
[13] 汪志荣, 王文焰, 王全九, 等. 浑水波涌灌溉入渗机制及其Green-Ampt 模型[J]. 水利学报, 1998, 10(44): 44-48.
[14] Hsu S Y, Hilpert M. Incorporation of dynamic capillary pressure into the Green–Ampt model for infiltration[J]. Vadose Zone Journal, 2011, 10(2): 642-653.
[15] Bouwer H. Unsaturated flow in ground-water hydraulics[J]. Journal of the Hydraulics Division, 1964, 90(5): 121-144.
[16] Bouwer H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis[J]. Water Resour. Res, 1966, 2(4): 729-738.
[17] Mein R G,Larson C L.Modeling infiltration component of the rainfall runoff process[R].Minnea polis Water Resour Research Center,University of Minnesota,1971.
[18] Morel‐Seytoux H J, Khanji J. Derivation of an equation of infiltration[J]. Water Resources Research, 1974, 10(4): 795-800.
[19] Brakensiek D L. Estimating the effective capillary pressure in the Green and Ampt infiltration equation[J]. Water Resources Research, 1977, 13(3): 680-682.
[20] Chong S K, Green R E, Ahuja L R. Infiltration prediction based on estimation of Green-Ampt wetting front pressure head from measurements of soil water redistribution[J]. Soil Science Society of America Journal, 1982, 46(2): 235-239.
[21] White I, Sully M J. Macroscopic and microscopic capillary length and time scales from field infiltration[J]. Water Resources Research, 1987, 23(8): 1514-1522.
[22] Philip J R. Reply to “Comments on steady infiltration from spherical cavities”[J]. Soil Science Society of America Journal, 1985, 49(3): 788-789.
[23] Raats P A C, Gardner W R. Comparison of empirical relationships between pressure head and hydraulic conductivity and some observations on radially symmetric flow[J]. Water Resources Research, 1971, 7(4): 921-928.
[24] Swartzendruber D. Derivation of a two-term infiltration equation from the Green–Ampt model[J]. Journal of Hydrology, 2000, 236(3): 247-251.
[25] Bagarello V, Iovino M, Elrick D. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity[J]. Soil Science Society of America Journal, 2004, 68(1): 66-73.
[26] Philip J R. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil science, 1957, 83(5): 345-358.
[27] Brakensiek D L, Rawls W J. Agricultural management effects on soil water processes Part II: Green and Ampt parameters for crusting soils[J]. Transactions of the ASAE, 1983, 26(6): 1753-1757.
[28] Reynolds W,Ellrick D,Topp G.A reexamination of the constant head well permeameter method for measuring saturated hydraulic conductivity above the water-table[J].Soil Science,1983, 136: 250-268.
[29] Reynolds W, Elrick D, Youngs E, et al. Methods of Soil Analysis. Part 4. SSSA Book Series[C]//Soil Science Society of America. 2002.
[30] Elrick D E, Reynolds W D. Methods for analyzing constant-head well permeameter data[J]. Soil Science Society of America Journal, 1992, 56(1): 320-323.
[31] Campbell G S. Soil physics with BASIC: transport models for soil-plant systems[M]. Elsevier, 1985.
[32] Cosby B J, Hornberger G M, Clapp R B, et al. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils[J]. Water Resources Research, 1984, 20(6): 682-690.
[33] Brakensiek D L, Rawls W J, Stephenson G R. Modifying SCS hydrologic soil groups and curve numbers for rangeland soils. ASAE Pap[R]. PNR-84-203. Am. Soc. Agric. Eng., St. Joseph, MI, 1984.
[34] W?sten J H M. Pedotransfer functions to evaluate soil quality[J]. Developments in Soil Science, 1997, 25: 221-245.
[35] W?sten J H M, Lilly A, Nemes A, et al. Development and use of a database of hydraulic properties of European soils[J]. Geoderma, 1999, 90(3): 169-185.
[36] Saxton K E, Rawls W J, Romberger J S, et al. Estimating generalized soil-water characteristics from texture[J]. Soil Science Society of America Journal, 1986, 50(4): 1031-1036.
[37] Vereecken H, Weynants M, Javaux M, et al. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review[J]. Vadose Zone Journal, 2010, 9(4): 795-820.
[38] 方堃, 陈效民, 张佳宝, 等. 红壤地区典型农田土壤饱和导水率及其影响因素研究[J]. 灌溉排水學報, 2008, 27(4): 67-69.
[39] 杨欣坤, 王宇, 赵兰坡, 等. 土壤水动力学参数及其影响因素研究进展[J]. 中国农学通报, 2014, 30(3): 38-43.
[40] Alletto L, Coquet Y. Temporal and spatial variability of soil bulk density and near-saturated hydraulic conductivity under two contrasted tillage management systems[J]. Geoderma, 2009, 152(1): 85-94.
[41] Knowles P R, Davies P A. A method for the in-situ determination of the hydraulic conductivity of gravels as used in constructed wetlands for wastewater treatment[J]. Desalination and water treatment, 2009, 5(1-3): 257-266.
[42] Knowles P R, Griffin P, Davies P A. Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland[J]. Water research, 2010, 44(1): 320-330.
[43] Pedescoll A, Uggetti E, Llorens E, et al. Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands[J]. Ecological Engineering, 2009, 35(8): 1216-1224.
[44] Kode?ová R, ?im?nek J, Nikodem A, et al. Estimation of the dual-permeability model parameters using tension disk infiltrometer and Guelph permeameter[J]. Vadose Zone Journal, 2010, 9(2): 213-225.
[45] Mu?oz-Carpena R, Regalado C M, álvarez-Benedi J, et al. Field evaluation of the new Philip-Dunne permeameter for measuring saturated hydraulic conductivity[J]. Soil Science, 2002, 167(1): 9-24.
[46] Philip J R. Approximate analysis of falling‐head lined borehole permeameter[J]. Water Resources Research, 1993, 29(11): 3763-3768.
[47] Rodgers M, Mulqueen J. Field-saturated hydraulic conductivity of unsaturated soils from falling-head well tests[J]. Agricultural water management, 2006, 79(2): 160-176.
[48] Vanderlinden K, Gabriels D, Giráldez J V. Evaluation of infiltration measurements under olive trees in Córdoba[J]. Soil and Tillage Research, 1998, 48(4): 303-315.
[49] Regalado C M, Mu?oz-Carpena R. Estimating the saturated hydraulic conductivity in a spatially variable soil with different permeameters: a stochastic Kozeny–Carman relation[J]. Soil and Tillage Research, 2004, 77(2): 189-202.
[50] Messing I, Jarvis N J. Temporal variation in the hydraulic conductivity of a tilled clay soil as measured by tension infiltrometers[J]. European Journal of Soil Science, 1993, 44(1): 11-24.
[51] Mohanty B P, Kanwar R S, Everts C J. Comparison of saturated hydraulic conductivity measurement methods for a glacial-till soil[J]. Soil Science Society of America Journal, 1994, 58(3): 672-677.
[52] Rodgers M, Mulqueen J. Field-saturated hydraulic conductivity of unsaturated soils from falling-head well tests[J]. Agricultural water management, 2006, 79(2): 160-176.
[53] Renard P. Approximate discharge for constant head test with recharging boundary[J]. Groundwater, 2005, 43(3): 439-442.
[54] Ankeny M D, Ahmed M, Kaspar T C, et al. Simple field method for determining unsaturated hydraulic conductivity[J]. Soil Science Society of America Journal, 1991, 55(2): 467-470.
[55] Bagarello V, Iovino M, Elrick D. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity[J]. Soil Science Society of America Journal, 2004, 68(1): 66-73.
[56] Pedescoll A, Samsó R, Romero E, et al. Reliability, repeatability and accuracy of the falling head method for hydraulic conductivity measurements under laboratory conditions[J]. Ecological Engineering, 2011, 37(5): 754-757.
[57] Fodor N, Sándor R, Orfanus T, et al. Evaluation method dependency of measured saturated hydraulic conductivity[J]. Geoderma, 2011, 165(1): 60-68.
[58] Fok Y S, Hansen V E. One-dimensional infiltration into homogeneous soil[J]. Journal of the Irrigation and Drainage Division, 1966, 92(3): 35-50.
[59] Fok Y S. Infiltration equation in exponential forms[J]. Journal of the Irrigation and Drainage Division, 1967, 93(4): 125-138.
[60] Hillel D,Gardner W R.Transient infiltration into crust-topped profiles[J].Soil Science,1970,109(2):69-76.
[61] Ahuja L R. Applicability of the Green-Ampt approach to water infiltration through surface crust[J]. Soil Science, 1974, 118(5): 283-288.
[62] Hammecker C, Antonino A C D, Maeght J L, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of air entrapment[J]. European Journal of Soil Science, 2003, 54(3): 491-503.
[63] Gavin K, Xue J. A simple method to analyze infiltration into unsaturated soil slopes[J]. Computers and Geotechnics, 2008, 35(2): 223-230.
[64] Dorofki M, Elshafie A H, Jaafar O, et al. A GIS-ANN-based approach for enhancing the effect of slope in the modified green-ampt model[J]. Water resources management, 2014, 28(2): 391-406.
[65] Chen L, Young M H. Green‐Ampt infiltration model for sloping surfaces[J]. Water resources research, 2006, 42(7):1-9.
[66] Langhans C, Govers G, Diels J. Development and parameterization of an infiltration model accounting for water depth and rainfall intensity[J]. Hydrological Processes, 2013, 27(25): 3777-3790.
[67] Jintao L,Jiabao Z,et al. Green–Ampt Model for Layered Soils with Nonuniform Initial Water Content Under Unsteady Infiltration[J]. Soil Sci. Soc. Am. J.,2008,72:1041-1047.
[68] Paulus R, Dewals B J, Erpicum S, et al. Innovative modelling of 3D unsaturated flow in porous media by coupling independent models for vertical and lateral flows[J]. Journal of Computational and Applied Mathematics, 2013, 246: 38-51.
[69] Ahuja L R. Modeling Infiltration into Crusted Soils by the Green—Ampt Approach[J]. Soil Science Society of America Journal, 1983, 47(3): 412-418.
[70] Chu S T.Infiltration during an unsteady rain[J].Water Resources,1978,14(3):461-466.
[71] Beven K. Infiltration into a class of vertically non-uniform soils[J]. Hydrological Sciences Journal, 1984, 29(4): 425-434.
[72] Gowdish L, Mu?oz-Carpena R. An improved Green–Ampt infiltration and redistribution method for uneven multistorm series[J]. Vadose Zone Journal, 2009, 8(2): 470-479.
[73] Barrera D, Masuelli S. An extension of the Green-Ampt model to decreasing flooding depth conditions, with efficient dimensionless parametric solution[J]. Hydrological Sciences Journal, 2011, 56(5): 824-833.
[74] Lane L J, Nearing M A, Laflen J M, et al. Description of the US Department of Agriculture water erosion prediction project (WEPP) model[J]. Overland flow: hydraulics and erosion mechanics. UCL Press, University College, London, 1992: 377-391.
[75] De Roo A P J, Offermans R J E, Cremers N L. A single-event physically-based hydrological and soil erosion model for drainage basins. II: sensitivity analysis, validation and application[J]. Hydrological processes, 1996, 10(8): 1119-1126.
[76] Tsihrintzis V A, Hamid R. Runoff quality prediction from small urban catchments using SWMM[J]. Hydrological Processes, 1998, 12(2): 311-329.
[77] Grimaldi S, Petroselli A, Romano N. Green‐Ampt Curve‐Number mixed procedure as an empirical tool for rainfall–runoff modelling in small and ungauged basins[J]. Hydrological processes, 2013, 27(8): 1253-1264.
[78] Grimaldi S, Petroselli A, Romano N. Curve‐Number/Green–Ampt mixed procedure for streamflow predictions in ungauged basins: Parameter sensitivity analysis[J]. Hydrological Processes, 2013, 27(8): 1265-1275.
[79] Petroselli A, Grimaldi S, Romano N. Curve-Number/Green-Ampt mixed procedure for net rainfall estimation: a case study of the Mignone watershed, IT[J]. Procedia Environmental Sciences, 2013, 19: 113-121.
[80] Charbeneau R J. Groundwater hydraulics and pollutant transport[M]. Waveland Press, 2006.
[81] Abidin N H, Ahmad R, Nordin S Z. Permeability parameter as a function of population density in classical infiltration equation[C]//Ibrahim H, Zulkepli J, Aziz N, et al. AIP Conference Proceedings. AIP, 2014, 1635(1): 684-689.
PDF(360 KB)

访问

引用

详细情况

段落导航
相关文章

/