针对常规PID难以取得期望的控制效果和单一神经网络在线整定存在结构复杂、学习时间过长、收敛速度慢等问题,提出了一种基于主成份优化的BP神经网络PID控制。在此方案中,利用主成份分析对网络的输入层单元进行降维分析,以此简化网络的结构,提高网络的收敛速度及泛化能力,进而提升智能控制系统的控制品质。基于上述理论本文在MATLAB/Simulink平台进行水轮机调节系统实例仿真分析,阐述并分析试验结果,说明了经主成份分析优化后的BP神经网络PID控制效果较优化前有了显著改善。
Abstract
According to the control effect of conventional PID is difficult to achieve the desired and single neural network on-line setting problems of complex structure, long training time, slow convergence speed, this paper proposes a BP neural network PID control based on principal component optimization. In this scenario, the analysis of the network input layer element analysis dimensionality reduction using principal components, in order to simplify the structure of the network, improve the network convergence speed and generalization ability, and enhance the quality control of intelligent control system. Based on the above theory, the simulation analysis of turbine governing system is carried out on the MATLAB/Simulink platform,and analysis of the test results shows that BP neural network PID control based on principal component analysis control effect than before optimization has been significantly improved.
基金
国家自然科学基金项目( U1504622) ; 华北水利水电大学研究生教育创新计划基金项目( YK2016-08)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]袁海锋.PID控制器参数整定与自整定方法的研究[D].南京工业大学,2007.
[2]侯树文, 王琳琳, 卢家涛,等. BP网络模糊PID控制在水轮机调速器中的应用[J]. 人民长江, 2008, 39(2):79-80.
[3]许永强,刘万康.基于主成分-BP神经网络的我国农村居民用电量的预测研究[J].电力学报,2016,2:162-166.
[4]李旭军.基于PCA方法的地理系统分析[J].赤峰学院学报(自然科学版),2011,12:41-43.
[5]何继爱, 达正花. BP神经网络PID控制器仿真实现[J]. 兰州文理学院学报(自然科学版), 2005, 19(2):31-34.
[6]陈铁华,李树刚.基于神经网络的水轮机调节系统非线性仿真[J].水电能源科学,2012,30(10):120-123,215.
[7]程远楚,张江滨.水轮机自动调节[M].中国水利水电出版社,2010.
[8]卢礼华,郭永丰,大刀川博之,梁迎春,下河边明.高增益PID控制器实现纳米定位[J].光学精密工程,2007,1:63-68.