冷却塔涡轮机全椭圆轴向出水蜗壳的水力设计

芦 月,屈 波,何中伟,栗文玲,刘佳佳

PDF(1366 KB)
中国农村水利水电 ›› 2017 ›› (11) : 194-198.
水电建设

冷却塔涡轮机全椭圆轴向出水蜗壳的水力设计

  • 芦月1,屈波1,何中伟2,栗文玲1,刘佳佳1
作者信息 +

The Hydraulic Design of Full Elliptical Cross-section Axial Effluent from the Bottom Spiral Case of Turbines in Cooling Towers

  • LU Yue1,QU Bo1,HE Zhong-wei2,LI Wen-ling1,LIU Jia-jia1
Author information +
稿件信息 +

摘要

由于大型机械冷却塔内部空间狭小,驱动风机的涡轮机应尽可能减小尺寸、提高效率。为此在结构方面设计出全椭圆形断面下端出水的特型蜗壳,大大减小了涡轮机径向尺寸。并结合传统蜗壳的设计理论推导出全椭圆蜗壳在稳态下的水力设计方法,通过实例设计与数值模拟分析可验证,特型蜗壳的流态模拟数据与设计工况的理论值相符,且水力损失仅有1.05%,涡轮机的整体效率可达88.25%,性能稳定。本文所设计的涡轮机因其结构小巧,可直接安装在冷却塔的内部,对现有电动风机冷却塔的节能改造具有广泛的应用前景。

Abstract

Due to the small space inside the large mechanical cooling tower, the fans driven by turbine should maximize to reduce the size and improve the efficiency. In this paper, a special type of spiral case with full elliptical cross section was designed, and water flowed out axially from the bottom .This design greatly reduced the radial size of the turbine. Combined with the design theory of the traditional spiral case, the hydraulic design method of the full elliptical spiral case under steady state was deduced. Through the instance design and analysis of numerical simulation, it could verify that the flow data of the special spiral case was consistent with the theoretical value of design conditions, and the hydraulic loss was only 1.05%, the whole turbine efficiency was up to 88.25%, the performance was stable. The turbine designed in this paper can be directly installed in the cooling tower because of its compact structure, so it has a broad application prospect for the energy saving of the existing electric fan cooling tower.

引用本文

导出引用
芦 月,屈 波,何中伟,栗文玲,刘佳佳. 冷却塔涡轮机全椭圆轴向出水蜗壳的水力设计[J].中国农村水利水电, 2017(11): 194-198
LU Yue,QU Bo,HE Zhong-wei,LI Wen-ling,LIU Jia-jia. The Hydraulic Design of Full Elliptical Cross-section Axial Effluent from the Bottom Spiral Case of Turbines in Cooling Towers[J].China Rural Water and Hydropower, 2017(11): 194-198

参考文献

[1] 章志平, 屈波, 栗文玲,等. 冷却塔水轮机椭圆蜗壳的设计与数值模拟[J]. 水电能源科学, 2016(11).
[2] 张兰金, 阳莉, 陈德新,等. 水力冷却塔水轮机的节能分析[J]. 可再生能源, 2012(7):123-125.
[3] 郑源, 张丽敏, 尹义武,等. 冷却塔中新型混流式水轮机设计[J]. 排灌机械工程学报, 2010, 28(6):484-487.
[4] 张丽敏, 郑源, 张成华,等. 用于冷却塔的超低比转数混流式水轮机设计[J]. 农业机械学报, 2010, 41(S1):39-42.
[5] 朱飞, 郑源, 范小娟,等. 冷却塔内小型混流式水轮机的设计及数值模拟[J]. 水电能源科学, 2013(7):165-168.
[6] 齐学义, 赵强, 马惠萍,等. 全蜗壳的非圆形断面水力设计及其CFD分析验证[J]. 兰州理工大学学报, 2009, 35(2):41-45.
[7] 齐学义, 晁文雄, 郝连松. 水轮机全蜗壳圆形断面的水力优化设计方法[J]. 兰州理工大学学报, 2012, 38(3):43-46.
[8] 王旭, 周琰杰. CFD数值模拟水轮机蜗壳三维设计[J]. 机械设计与制造, 2013(10):17-18.
[9] Zhang L, Ren Y, Li Y, et al. Hydraulic Characteristic of Cooling Tower Francis Turbine with Different Spiral Casing and Stay Ring[J]. Energy Procedia, 2012, 16:651-655.
[10] 王飞, 王庆方, 王勇军,等. 水轮机蜗壳的优化设计与CFD分析[J]. 水利水电科技进展, 2012, 32(5):86-88.
[11] Klyukach A A. Effect of Asymmetry of Spiral Casing on Vibration of Generating Set[J]. Power Technology and Engineering, 2014, 47(6):408-415.
[12] Zhang L J, Wang L, Ren Y. Characteristic Analysis of Francis-Turbine in Cooling Tower[J]. Applied Mechanics & Materials, 2012, 190-191:57-59.
[13] Zhang L. Study on Francis Turbine with Super-low Specific Speed Applied in Cooling Towers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010:755-759.
[14] Zhou D, Chen H, Yang C. A highly efficient Francis turbine designed for energy recovery in cooling towers[J]. Advances in Mechanical Engineering, 2015, 7(3).
[15] Ayli U E, Kaplan A, Cetinturk H, et al. CFD Analysis of 3D Flow for 1.4 MW Francis Turbine and Model Turbine Manufacturing[C]// ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2015:V01AT02A002.
[16] 熊妍, 屈波, 霍志红,等. 冷却塔专用超低比转速水轮机的设计及数值模拟[J]. 南水北调与水利科技, 2014(3):112-115.
[17] 刘娟, 张琦. 水轮机技术在工业循环水冷却塔中的应用[J]. 山东化工, 2016, 45(13):135-136.
[18] 王旭, 李萍, 陈荣盛,等. 水轮机椭圆蜗壳设计的CFD计算及试验分析[J]. 人民黄河, 2016, 38(1):109-111.
[19] 黄敏, 屈波, 皮雪松,等. 冷却塔专用新型双级贯流式水轮机的转轮直径优化[J]. 机械制造与自动化, 2013, 42(2):152-153.
[20] 姜锋, 张建蓉, 叶文波,等. 混凝土蜗壳水力设计方法比较[J]. 水电自动化与大坝监测, 2014(6):49-52.
PDF(1366 KB)

访问

引用

详细情况

段落导航
相关文章

/