SWAT模型是目前解决流域水文模拟、环境评价等问题的主要工具之一。以葫芦河流域为研究对象,建立2006-2012年流域月尺度SWAT模型,探究不同亚流域划分下径流、泥沙、营养物的响应情况,确定流域亚流域划分水平,并在此基础上进行月尺度的径流模拟,验证其适用性。结果表明:(1)随着亚流域数量的增加,产流、产沙以及营养物负荷均呈现先显著上升后下降,最后趋于稳定的变化规律,并确定流域合理的亚流域划分为37个;(2)基于37个亚流域划分的径流模拟,率定期和验证期的R2值分别为0.84和0.81,Ens值分别为0.76和0.62,模拟效果理想。研究结果可为葫芦河流域进一步的水文模拟研究提供有效的参考依据。
Abstract
SWAT model is one of the main tools to solve the problem of hydrological simulation and environmental assessment. Taking Huluhe basin as the study area, the monthly scale SWAT model from 2006 to 2012 was established to explore the response of the runoff, sediment and nutrient in different sub-watersheds, and determine the sub-watershed delineation. Based on the reasonable sub-watershed delineation level to simulate monthly runoff and verify its applicability. The results showed: (1) With the increase of the number of sub-watersheds, the runoff, sediment and nutrient showed a significant increase and then decreased, and finally became stable. Huluhe basin reasonable sub-watershed delineation level was 37. (2) Based on the runoff simulation of 37 sub-watersheds, Nash-Sutcliffe coefficients (Ens) in calibration and validation period were 0.84 and 0.81 respectively, and the coefficients of determination(R2) were 0.76 and 0.62 respectively, and the simulation results were satisfactory. The result can provide an effective reference for further hydrological simulation in Huluhe basin.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]徐宗学,程磊.分布式水文模型研究与应用进展[J].水利学报, 2010, 41(9):1009-1017
[2]江净超,朱阿兴,秦承志,等.分布式水文模型软件系统研究综述[J].地理科学进展, 2014, 33(8):1090-1100
[3] Mamillapalli S, Srinivasan R, Arnold J G, et al.Effect of spatial variability on basin scale modeling [EB/OL]. 1996, http://www.ncgia.ucsb.edu.
[4]Binger R L, et al.Effect of watershed subdivision on simulation runoff and fine sediment yield[J].Transaction of the ASAE, 1997, 40(5):1329-1335
[5] FitzHugh T W, Mackay D S.Impacts of subwatershed partitioning in modeled source-and transport-limitied sediment yields in an agricultural nonpoint source pollution model[J]. Journal of Soil and Water Conservation. 2001, 56(2): 137-147.
[6] 张雪松,郝芳华,程红光,等.亚流域划分对分布式水文模型模拟结果的影响[J].水利学报,2004,(7):119-123.
[7]胡连伍,王学军,罗定贵,等.不同子流域划分对径流、泥沙、营养物模拟的影响—丰乐河流域个例研究[J].水科学进展, 2007, 18(2):235-240
[8]黎云云,畅建霞,金文婷.基于模型的渭河流域分区径流模拟研究[J].西北农林科技大学学报自然科学版, 2017, 45(4):1-9
[9]D.N.Moriasi,JG.Arnold,M.W.Van Liew,et,al. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations[J].Transaction of the ASAE, 2007, 50(3):885-900
[10]李曼曼,韩会玲,刘晓英,等.模型最佳子流域划分方案研究—以云南洱海流域为例[J].中国农业气象, 2012, 33(2):185-189
[11]张召喜,罗春燕,张敬锁,等.子流域划分对农业面源污染模拟结果的影响[J].农业环境科学学报, 2012, 31(10):1986-1993
[12]马放,姜晓峰,王立,等.基于模型的亚流域划分方法研究[J].中国给水排水, 2015, 31(7):53-57
[13]Williams, J, R.Sediment routing for agricultural watersheds[J].Water Resources Bulletin, 1975, 11(5):965-974
[14]Wang G, Chen L, Huang Q, et, al.The influence od watershed subdivision level on model assessment and identification of non-point source priority management areas[J].Ecological Engineering, 2016, 87(3):110-119