灌溉影响土壤微生物活动和作物根系生长,进而影响土壤CO2的产生和排放。为揭示亏缺灌溉夏玉米地土壤CO2的排放特征,于2015年6月~10月在西北农林科技大学中国旱区节水农业研究院农田水分转化试验场,采用静态暗箱-气相色谱法对夏玉米地土壤CO2排放进行了原位观测。试验设置三个处理,分别为充分灌溉(CK),亏水20%(T1)和亏水40%(T2)。结果表明:夏玉米地土壤CO2排放通量在播种后达到峰值并急剧下降至低谷,直到在灌水后出现短暂的次高峰期,随后一直维持在较低排放水平直到玉米收获。在灌水后,土壤CO2的排放通量表现为CK>T1>T2,且CK与T2,T1与T2处理间有显著差异(P<0.05)。不同灌水水平下,夏玉米地土壤CO2排放通量与土壤充水孔隙率呈指数正相关关系,相关性达显著水平(P<0.05)。亏缺灌溉在一定程度上抑制了土壤CO2的排放,土壤充水孔隙率低于50%时,CO2排放通量维持在较低水平,但当土壤充水孔隙率高于50%时,CO2排放通量随着土壤充水孔隙率的增加而有大幅度增加。该研究结果可为农田的节水减排提供参考。
Abstract
Irrigation can affect the production and emission of CO2 by affecting the life activities of the microorganisms in soils and the root growth of crops. In order to reveal the emission characteristics of CO2 of soils in summer maize under deficit irrigation, the experiment was carried out by using the method of static chamber/gas chromatography in situ observation of soil CO2 emission from summer maize under the transform of farmland moisture proving ground of China academy of the water-saving agriculture in arid of Northwest A & F University in June-October, 2015. Three treatments were contained in the experiment: sufficient irrigation (CK), deficit 20% of water (T1), deficit 40% of water (T2).The results showed that: The CO2 flux of soil in summer maize field reached the peak after sowing and dropped to a low level until it reached a short sub-peak after irrigation and then remained at a low level until corn harvested. The CO2 emission flux of soil was CK> T1> T2 after irrigation, and there was significant difference between CK and T2, T1 and T2 (P <0.05). Exponential positive correlations between CO2 fluxes and soil water-filled pore space (WFPS) were observed in summer maize under different irrigation levels and the correlation was significant (P<0.01).The results suggested that deficit irrigation inhibited CO2 emissions from soil in some extent , the CO2 emission flux was maintained at a low level when the soil water-filled pore space was less than 50%, but when the soil water-filled pore space was higher than 50%, the CO2 emission flux increases greatly with the increase of water-filled pore space. The study results can provide a reference of water conservation and reduction of greenhouse gas emissions in farmland.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Kiehl J T, Trenberth K E. Earth's Annual Global Mean Energy Budget[J]. Bulletin of the American Meteorological Society. 1997, 78(2): 197-208.
[2] Ding W, Lei M, Yin Y, et al. CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer[J]. Soil Biology & Biochemistry. 2007, 39(2): 669-679.
[3] 王艳华,徐俊增,卫琦,等. 水分非均匀分布条件下土壤CO2的排放特征[J]. 中国农村水利水电. 2015(02): 13-17.
[4] Guo J P, Zhou C D. Greenhouse gas emissions and mitigation measures in Chinese agroecosystems[J]. Agricultural & Forest Meteorology. 2007, 142(2–4): 270-277.
[5] 李虎,邱建军,王立刚,等. 中国农田主要温室气体排放特征与控制技术[J]. 生态环境学报. 2012(01): 159-165.
[6] 刘笑吟,吴勇强,刘诗梦,等. 节水灌溉稻田不同土壤水分条件下水碳通量日变化特征[J]. 中国农村水利水电. 2016(8): 93-96.
[7] Bond-Lamberty B, Wang C, Gower S T. A global relationship between the heterotrophic and autotrophic components of
soil respiration?[J]. Global Change Biology. 2004, 10(10): 1756-1766.
[8] Schimel D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology. 1995, 1(1): 77-91.
[9] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and
climate[J]. Tellus Series B-chemical & Physical Meteorology. 1992, 44(2): 81-99.
[10] Davidson E A, Verchot L V, Cattanio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry. 2000, 48(1): 53-69.
[11] Wang C, Yang J, Zhang Q. Soil respiration in six temperate forests in China[J]. Global Change Biology. 2006, 12(11): 2103-2114.
[12] Almagro M, Lopez J, Querejeta J I, et al. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry. 2009, 41(3): 594-605.
[13] Musick J T, Jones O R, Stewart B A, et al. Water-yield relationships for irrigated and dryland wheat in the U.S. southern plains.[J]. Agronomy Journal. 1994, 86(6): 980-986.
[14] 牛文全,古君,梁博惠,等. 水分亏缺条件下毛管埋深对番茄生长、产量及品质的影响[J]. 农业机械学报. 2017, 48(3).
[15] 刘小刚,万梦丹,齐韵涛,等. 不同遮阴下亏缺灌溉对小粒咖啡生长和水光利用的影响[J]. 农业机械学报. 2017(1): 191-197.
[16] 李志国,张润花,赖冬梅,等. 膜下滴灌对新疆棉田生态系统净初级生产力、土壤异氧呼吸和CO2净交换通量的影响[J]. 应用生态学报. 2012(04): 1018-1024.
[17] 彭世彰,杨士红,徐俊增. 控制灌溉对稻田CH4和N2O综合排放及温室效应的影响[J]. 水科学进展. 2010, 21(2): 235-240.
[18] 张永清,苗果园. 水分胁迫条件下有机肥对小麦根苗生长的影响[J]. 作物学报. 2006(06): 811-816.
[19] 虞连玉. 不同水分供应条件下夏玉米农田SPAC系统水热传输模拟[D]. 西北农林科技大学, 2016.
[20] 王晓龙,张寒,姚志生,等. 季节性冻结高寒泥炭湿地非生长季甲烷排放特征初探[J]. 气候与环境研究. 2016, 21(3): 282-292.
[21] 陈慧,侯会静,蔡焕杰,等. 加气灌溉温室番茄地土壤N2O排放特征[J]. 农业工程学报. 2016(03): 111-117.
[22] 陈慧,侯会静,蔡焕杰,等. 加气灌溉对番茄地土壤CO2排放的调控效应[J]. 中国农业科学. 2016, 49(17): 3380-3390.
[23] 杜丽君,陈涛,胡荣桂. 不同土地利用方式土壤水分、温度对CO2排放的影响[J]. 安徽农学通报. 2008(11): 59-60.
[24] 杨硕欢,张保成,王丽,等. 水肥用量对玉米季土壤CO2排放的综合影响[J]. 环境科学. 2016, 37(12): 4780-4788.
[25] 汤亿,严俊霞,孙明,等. 灌溉和翻耕对土壤呼吸速率的影响[J]. 安徽农业科学. 2009, 37(6): 2625-2627.
[26] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus. 1992, 44(2): 81-99.
[27] 贾丙瑞,周广胜,王风玉,等. 土壤微生物与根系呼吸作用影响因子分析[J]. 应用生态学报. 2005(08): 1547-1552.
[28] Liu X, Wan S, Su B, et al. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil. 2002, 240(2): 213-223.
[29] 张芳,郭胜利,邹俊亮,等. 长期施氮和水热条件对夏闲期土壤呼吸的影响[J]. 环境科学. 2011(11): 3174-3180.
[30] 齐玉春,郭树芳,董云社,等. 灌溉对农田温室效应贡献及土壤碳储量影响研究进展[J]. 中国农业科学. 2014(09): 1764-1773.
[31] Scheer C, Grace P R, Rowlings D W, et al. Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management[J]. Nutrient Cycling in Agroecosystems. 2013, 95(1): 43-56.
[32] Qiu Q, Wu L, Ouyang Z, et al. Effects of plant-derived dissolved organic matter (DOM) on soil CO2 and N2O emissions and soil carbon and nitrogen sequestrations[J]. Applied Soil Ecology. 2015, 96: 122-130.
[33] 李虎,邱建军,王立刚. 农田土壤呼吸特征及根呼吸贡献的模拟分析[J]. 农业工程学报. 2008(04): 14-20.
[34] 禄兴丽,廖允成. 不同耕作措施对旱作夏玉米田土壤呼吸及根呼吸的影响[J]. 环境科学. 2015(06): 2266-2273.
[35] 彭家中,常宗强,冯起. 温度和土壤水分对祁连山青海云杉林土壤呼吸的影响[J]. 干旱区资源与环境. 2008, 22(3): 165-169.
[36] 宋文质,王少彬,苏维瀚,等. 我国农田土壤的主要温室气体CO2、CH4和N2O排放研究[J]. 环境科学. 1996(01): 85-88.
[37] Han G, Zhou G, Xu Z, et al. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem[J]. Soil Biology & Biochemistry. 2007, 39(2): 418-425.
[38] 寇太记,徐晓峰,朱建国,等. CO2浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献[J]. 应用生态学报. 2011(10): 2533-2538.
[39] 王丙文,迟淑筠,田慎重,等. 不同玉米秸秆还田方式对冬小麦田土壤呼吸的影响[J]. 应用生态学报. 2013(05): 1374-1380.
[40] 李玉强,赵哈林,赵学勇,等. 土壤温度和水分对不同类型沙丘土壤呼吸的影响[J]. 干旱区资源与环境. 2006(03): 154-158.
[41] 蔡艳,丁维新,蔡祖聪. 土壤-玉米系统中土壤呼吸强度及各组分贡献[J]. 生态学报. 2006(12): 4273-4280.
[42] Davidson E A, Verchot L V, Cattanio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biogeochemistry. 2000, 48(1): 53-69.
[43] 张宇,张海林,陈继康,等. 耕作措施对华北农田CO2排放影响及水热关系分析[J]. 农业工程学报. 2009(04): 47-53.