立方抛物线形断面收缩水深的计算需求解含已知参数的单变量高次方程,理论上无解析解。首次提出高次方程近似求解的迭代逼近-逐次优化拟合方法,基于迭代理论建立合适的拟合函数模型,选取适当的参数对其进行逐次优化拟合,得到一套高精度的直接计算公式,为明渠特征水深的精确计算提供了一条新的途径。误差分析及实例计算结果表明,在工程适用范围内,该公式的最大相对误差绝对值小于0.118%,精度高于现有的各类直接计算公式,具有较大的工程实用价值。
Abstract
High-order equations including one variable and known parameters have to be solved for the calculation of contracted water depth in cubic parabolic cross-sections, which have no analytic solutions. The iterative approximation-gradually optimal fitting method was first established for approximate solutions of high-order equations. An appropriate model function was proposed for curve fitting based on the iteration theory. Proper parameters were selected for gradually optimal fitting and a direct calculation formula with high accuracy was derived, thus providing a new approach to the accurate calculation of characteristic depths in open channels. Results of error analysis and practical example indicated that within the practical scope of engineering, the maximum absolute relative error of the proposed formula was less than 0.118%, which was more accurate than all the presently available formulae. The proposed formula was of great val-ue for practical engineering
关键词
迭代逼近 /
逐次优化拟合 /
立方抛物线形断面 /
收缩水深
{{custom_keyword}} /
Key words
iterative approximation /
gradually optimal fitting /
cubic parabolic cross-section /
contracted water depth
{{custom_keyword}} /
基金
“十二五”国家科技支撑计划项目( 2015BAB07B01) ;
江苏省普通高校 研究 生 科 研 创 新 计 划 项 目 ( KYLX16 _1397) ;
中国博士后科学基金面上资助项目( 2015M571826) ;
江苏省高校优势学科建设工程资助项目( PAPD) ;
扬州大学大学生学术科技创新基金资助项目( x20160528 ) ;
扬州大学科技创 新培育基金( 2015CXJ025) 。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张志昌,贾斌,李若冰,等.抛物线形渠道的水力特性[J].水利水运工程学报, 2015, (1):61-67
[2]张丽伟,滕凯.抛物线形断面最优水力参数及方程指数计算方法[J].水利水电科技进展, 2014, 34(5):65-68
[3]范子龙,赵明登.幂律形水力最佳断面设计与正常水深计算方法[J].中国农村水利水电, 2015, (9):157-159
[4]Vatankhah A R.Direct solutions for normal and critical depths in standard city-gate sections[J].Flow Measurement and Instrumentation, 2012, 28:16-21
[5]Zhang X Y,Wu L.Direct solutions for normal depths in curved irrigation canals[J].Flow Measurement and Instrumentation, 2014, 36:9-13
[6]张新燕,吕宏兴.无压圆形隧洞正常水深直接算法[J].水力发电学报, 2014, 33(1):127-131
[7]张新燕,吕宏兴,朱德兰.U形渠道正常水深的直接水力计算公式[J].农业工程学报, 2013, 29(14):115-119
[8]冷畅俭,王正中.三次抛物线形渠道断面收缩水深的计算公式[J].长江科学院院报, 2011, 28(4):29-31
[9]谢成玉,滕凯.三次抛物线形渠道断面收缩水深的简化计算公式[J].南水北调与水利科技, 2012, 10(1):136-138
[10]赵延风,王正中,刘计良.抛物线类渠道断面收缩水深的计算通式[J].水力发电学报, 2013, 32(1):126-131
[11]滕凯.抛物线形断面渠道收缩水深简化计算通式[J].水利水电科技进展, 2014, 34(5):61-64
[12]代述兵,刘韩生,卞晓卫,等.三种抛物线形断面收缩水深的直接计算公式[J].长江科学院院报, 2015, 32(9):90-93