基于2013年9-11月神农溪库湾水动力过程及营养盐变化连续监测数据,研究三峡水库蓄水期干流倒灌这一特殊水动力过程对支流库湾营养盐分布的影响。结果表明:在蓄水过程中,干流水体分别以表层、中层和底层异重流的形式倒灌入神农溪库湾,蓄水第一阶段库湾上游区域的(N/P)介于10到22之间,上游区域暴发水华的风险大于下游;第二阶段库湾中TP浓度由最初的0.056mg/L上升至0.11mg/L,TN浓度由1.30mg/L上升到2.02mg/L,库湾(N/P)几乎都集中在14到20之间,满足藻类生长的最佳条件,水华暴发风险最大;第三阶段TP由0.11mg/L降至0.049mg/L,TN由2.02mg/L降至1.77mg/L,整个库湾(N/P)>22,此阶段由于磷营养盐的限制,相较于前两个阶段水华暴发的风险明显降低。
Abstract
Based on the data of continuous measurement of hydrodynamics and nutrients of the Shennong Bay was conducted during September and November 2013, the goal of this study is to investigate the effect of reverse density flow on nutrients distribution of the Shennong Bay during impoundment of Three Gorges Reservoir. The results show that during impoundment, the water backward flow from main stream into Shennong Bay respectively by surface layer, middle and bottom in the form of density flow. The N/P ratio at the upstream of the Shennong Bay ranged between 10 and 22 during the initial stage of impoundment, indicating a higher risk of algal bloom at the upstream compared to the downstream; the TP concentration of the bay increased from the initial 0.056 mg/L to 0.11 mg/L, the TN concentration increased from 1.30mg/L to 2.02 mg/L during the second stage of impoundment, the bay was characterized by the N/P ratio of 14-20 which was ideal for algal growth; the TP concentration of the bay dropped from 0.11 mg/L to 0.049 mg/L, the TN concentration dropped from 2.02 mg/L to 1.77 mg/L during the third stage of impoundment, indicating the highest risk of algal bloom; the third stage of impoundment was characterized by negligible water level changes and the N/P ratio > 22, indicating a reduced risk of algal bloom compared to the previous two stages due to the restriction of phosphorus nutrient.
关键词
三峡水库 /
异重流 /
神农溪库湾 /
营养盐 /
动态分布
{{custom_keyword}} /
Key words
Three Gorges Reservoir /
Density Flow /
Shennong Bay /
Nutrients /
dynamic distribution
{{custom_keyword}} /
基金
国家重点基础研究发展计划(2014CB460601);
国家自然科学基金青年科学基金(2014ZX07104-005-01);
水体污染控制与治理科技重大专项(2014ZX07104-005-02)。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报, 2003, 21(0309):49-52
[2] 谢涛.三峡水库调度对香溪河库湾水温特性的影响研究[D]. 三峡大学,2014.
[3]Holbach A, Wang L, Chen H, et al.Water mass interaction in the confluence zone of the Daning River and the Yangtze River—a driving force for algal growth in the Three Gorges Reservoir[J].Environmental Science and Pollution Research, 2013, 20(10):7027-7037
[4] 陈媛媛,刘德富,杨正健,等.分层异重流对香溪河库湾主要营养盐补给作用分析[J].环境科学学报, 2013, 33(3):762-770
[5] 吉小盼,刘德富,黄钰铃,等.三峡水库泄水期香溪河库湾营养盐动态及干流逆向影响[J].环境工程学报, 2010, (12):2687-2693
[6] 张宇,刘德富,纪道斌,等.干流倒灌异重流对香溪河库湾营养盐的补给作用[J].环境科学, 2012, 33(8):2621-2627
[7] 复盛,国家环境保护总局,水和废水监测分析方法委员会.水和废水监测分析方法[M]. 中国环境科学出版社,2002.
[8] 黄祥飞,孙鸿烈,刘光崧.湖泊生态调查观测与分析[M].中国标准出版社,2000.
[9] 黄钰铃,陈明曦,郭静.不同水温下蓝藻水华生消模拟与预测[J].三峡大学学报: 自然科学版, 2009, 31(1):84-88
[10] 纪道斌,刘德富,杨正健,等.三峡水库香溪河库湾水动力特性分析[J][J].中国科学, 2010, (1):101-112
[11] 钱宁,万兆慧.泥沙运动力学[J].2003, :-
[12] 曹承进,秦延文,郑丙辉,等.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学, 2008, 29(2):310-315
[13] 王圣瑞,金相灿,庞燕.不同营养水平沉积物在不同 下对磷酸盐的等温吸附特征[J].环境科学研究, 2005, 18(1):53-57
[14] 周济福,曹文洪,杨淑慧,等.河口泥沙研究的进展[J].2003,
[15] 曹明,蔡庆华,刘瑞秋,等.三峡水库库首初期蓄水前后理化因子的比较研究[J].水生生物学报, 2006, 30(1):12-19
[16] 杨东方,高振会,陈豫,等.硅的生物地球化学过程的研究动态[J].海洋科学, 2002, 26(3):39-42
[17] 杨东方,高振会,秦洁,等.地球生态系统的营养盐硅补充机制[J].海洋科学进展, 2006, 24(4):568-576
[18] 李哲,郭劲松,方芳,等.三峡水库小江回水区不同 水平下氮素形态分布和循环特点[J].湖泊科学, 2009, 21(4):509-517
[19] 彭近新,陈慧君.水质富营养化与防治[M]. 中国环境科学出版社,1988.
[20] Guildford S J, Hecky R E.Total nitrogen,total phosphorus,and nutrient limitation in lakes and oceans: Is there a common relationship?[J].Limnology and Oceanography, 2000, 45(6):1213-1223
[21] Conley D J, Malone T C.Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass[J].Marine ecology progress series. Oldendorf, 1992, 81(2):121-128
[22] Schemel L E, Sommer T R, Müller-Solger A B, et al.Hydrologic variability,water chemistry,and phytoplankton biomass in a large floodplain of the Sacramento River,CA,USA[J].Hydrobiologia, 2004, 513(1-3):129-139
[23] Leitao M, Morata S M, Rodriguez S, et al.The effect of perturbations on phytoplankton assemblages in a deep reservoir (Vouglans, France)[M]//Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Springer Netherlands, 2003: 73-83.
[24] Huang Y L, Zhang P, Liu D F, et al.Nutrient spatial pattern of the upstream,mainstream and tributaries of the Three Gorges Reservoir in China[J].Environmental monitoring and assessment, 2014, 186(10):6833-6847
[25] 罗专溪,朱波,郑丙辉,等.三峡水库支流回水河段氮磷负荷与干流的逆向影响[J].中国环境科学, 2007, 27(2):208-212
[26] Reynolds C S.The ecology of freshwater phytoplankton[M]. London:Cambridge University Press, 1984.
[27] 韩新芹,叶麟,徐耀阳,等.香溪河库湾春季叶绿素浓度动态及其影响因子分析[J].水生生物学报, 2006, 30(1):89-94
[28] Justic D, Rabalais N N, Turner R E, et al. Changes in nutrient structure of rive-dominated coastal waters: stoichiometrie nutrient balance and its consequences [J].Estuarine Coastal and Shelf Science, 1995. 40: 339-356.
[29] 李军,刘丛强,王仕禄,等.太湖水体溶解营养盐、、的冬、夏二季变化特征及其与富营养化的关系[J].地球与环境, 2005, 33(1):63-67