在分析研究区水文地质条件的基础上,基于水量平衡原理,本文应用Visual MODFLOW建立了研究区地下水系统水流模型。利用观测井观测资料及南水北调输水实测资料,对模型进行了识别和验证,证明所建模型有效合理。并预报了未来五年地下水位的变化情况,结果表明:①2020年地下水流场未发生明显变化;②2020年地下水位得到整体抬升,最大抬升高度达6.0 m;③2020年地下水年内波动状态与2015年相比变化不大;④ 2020年地下水年变幅在0.5~1.0 m之间。
Abstract
Based on the analysis of hydrogeological conditions and the balance of water quantity in the study area,the flow model of the Liang-Ji basin is built by using Visual MODFLOW software. The model is identified and verified by the observation data and the measured data of the South-to-North water transfer,which proves the model's rationality and effectiveness. Moreover,the model forecasts the changes of groundwater level in the next five years. The results show that: ①The groundwater flow field will not change significantly in 2020. ②The groundwater table will overall uplift in 2020,and the maximum lifting height can reach 6.0 m. ③Compared with 2015,the groundwater fluctuation will change little within the year in 2020. ④The annual variation of groundwater will range from 0. 5 to 1. 0 m in 2020. ⑤The groundwater can be recharged by 9.8×104 m3 /d.
关键词
南水北调 /
梁济运河 /
MODFLOW /
地下水位 /
预测
{{custom_keyword}} /
Key words
South-to-North Water Transfer Project /
Liang-Ji Canal Zone /
MODFLOW /
groundwater table /
prediction
{{custom_keyword}} /
基金
国家自然科学基金资助项目(41202174);
科技部国际科技合作与交流计划项目(2007DFB70200);
高等学校博士学科点专项科研基金资助项目(20123702120020)。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]祁元昊, 张鑫, 焦莹,等. 南水北调供水前后京杭运河梁济段沿岸地下水埋深变化预测研究[J]. 水利与建筑工程学报, 2012, 10(3):145-149.
QI Y H, Zhang X, Jiao Y. Prediction for Groundwater Depth Changes in Intake Area of South-to-North Water Transfer Project in Liangji Reach of Hangzhou Canal[J]. Journal of Water Besources and Architectural Engineering, 2012, 10(3):145-149.
[2]方生, 陈秀玲. 关于黄淮海东部平原南水北调受水区水资源优化配置与生态环境综合治理的建议[J]. 南水北调与水利科技, 2004, 24(3):131-133.
Fang S, Chen X L. Suggestions for optimal allocation of water resources and comprehensive management of ecological environment on the east area of the Yellow-Huaihe-Haihe Plain in the benefited regions of the South-to-North Water Transfer Project[J]. South to North Water Transfers and Water Science&Technology, 2004, 24(3):131-133.
[3] Rejani R, Jha M K, Panda S N, et al. Simulation Modeling for Efficient Groundwater Management in Balasore Coastal Basin, India[J]. Water Resources Management, 2007, 22(1):23-50.
[4] Thomas T, Jaiswal R K, Galkate R, et al. Development of a Rainfall-Recharge Relationship for a Fractured Basaltic Aquifer in Central India[J]. Water Resources Management, 2009, 23(15):3101-3119.
[5]席海洋, 冯起, 司建华,等. 黑河下游额济纳三角洲河道渗漏对地下水补给研究综述[J]. 冰川冻土, 2012, 34(5):1241-1247.
XI H Y, FENG Q, SI J H. A Review of River Course Leakage in the Ejina Delta in the Lower Reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2012,34(5):1241-1247.
[6]杨安邦, 朱顺初, 周家贵,等. 南水北调东线一期工程对梁济运河段地下水影响研究[J]. 南水北调与水利科技, 2009, 7(06):245-249.
Yang A B, Zhu S C,Zhou J G. The Impact of the First Stage in East-Route of South-to-North Water Transfer Project on Ground Water along Liangji Canal[J]. South to North Water Transfers and Water Science&Technology, 2009, 7(06):245-249.
[7]王刚, 周启友, 魏国孝,等. 酒泉盆地地下水系统数值模拟与预测[J]. 工程勘察, 2009, 37(02):37-41.
Wang G, Zhou Q Y, Wei G X. Numerical simulation and forecast for groundwater system of jiuquan basin[J]. Geotechnical Investigation&Surveying, 2009, 37(02):37-41.
[8]薛禹群. 地下水动力学[M]. 北京:地质出版社, 1997.
[9]郑春苗. 地下水污染物迁移模拟[M]. 北京:高等教育出版社, 2009.
[10]薛禹群, 谢春红. 地下水数值模拟[M]. 北京:科学出版社, 2007.
[11]GB/T 14497—1993, 地下水资源管理模型工作要求[S]. 北京:中国标准出版社, 1994.
[12]廖梓龙. 包头市地下水动态模拟与调控研究[D]. 中国水利水电科学研究院, 2013.