在实际泵站运行中需要根据不同要求调节流量扬程,由于泵站中定速泵和调速泵运行组合不合理,导致泵站运行效率低下。针对此问题,提出以泵站总功率最小为目标函数,以泵群总流量、单泵供水能力和调速泵的调速比为约束条件,建立了泵站优化运行数学模型。利用人工蜂群算法确定水泵并联运行的台数、凋速泵的调速比及各泵流量的分配,实现泵站的优化运行。以某泵站实际要求进行计算,得出优化运行方案,比较并分析人工蜂群算法和标准遗传算法在泵站优化运行中的适用性。结果表明:人工蜂群算法的计算结果更优,收敛速度更快,计算用时更少,表明该算法在泵站优化运行及相近领域有较高的实用价值。
Abstract
Flow capacity-head should be tuned in the actual operation of pumping stations in order to meet different needs. However,the mismatching in running combination of constant-rate pumps and speed governing pumps may lead to the low operating efficiency of pumping stations. To solve this problem,a new mathematical model of optimizing operation of pumping stations in which the minimum total power of pumping stations as objective functions,total flow of pump groups,water supply capacity of single pump and speed regulation ratio of speed governing pumps as constraints is established. The operation numbers of the pumps in parallel,speed ratio of speed governing pump and flow distribution of flux of each pump were determined by utilizing artificial bee colony algorithm and optimizing operation of pump station was achieved.The protocol of optimizing operation obtained by calculating the optimal operation of certain pumping stations. The comparison of applicability between artificial bee colony algorithm and standard genetic algorithm in optimizing the operation of pumping stations was then performed. The results show that artificial bee colony algorithm value is better,the rate of convergence is faster and the computation of time is less,which demonstrates that the proposed algorithm possesses higher practical values in optimizing the operation and adjacent neighborhood of pumping stations.
关键词
泵站 /
优化运行 /
人工蜂群算法 /
遗传算法
{{custom_keyword}} /
Key words
pumping station /
optimized operation /
artificial bee colony algorithm /
genetic algorithm
{{custom_keyword}} /
基金
国家自然科学基金资助项目"改善电液伺服系统动态特性的双自由度回路原理及控制方法"(51075291)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨建军.多源注水系统泵站优化调度的双重编码混合遗传算法 [J] 2006, 32(1); 154-160[J].自动化学报, 2006, 32(1):154-160
[2] 鄢碧鹏.基于遗传算法和神经网络的泵站经济运行研究[J] 2007.38(1) 80-8[J].农业机械学报, 2007, 38(1):80-82
[3]秦全德.人工蜂群算法研究综述[J].智能系统学报, 2014, 9(2):128-135
[4]葛宇.一种多目标人工蜂群算法[J].计算机科学, 2015, 4(9):257-261
[5] KARABOGA D,GORKEMLI B. A combinatorial artificial bee colony algorithm for traveling salesman problem[C]/ /International Symposium on Innovations in IntelligentSystems and Applications. Istanbul,Turkey,2011: 50-53.[J].Engineering Faculty,, 2011, 5(2):50-53
[6] KARABOGA D,.An idea based on bee swarmfor numerical optimization,2005.[J].Engineering Faculty, 2005, 23(3):30-33
[7]RAJASEKHAR A,ABRAHAM APANTM..Levy mutatedartificial bee colony algorithm for global optimization[C], .[J].IEEE International Conference on Systems,, 2011, 33(5):662-665
[8] 张土乔.用于供水系统直接优化调度的蚁群改进算法 [J] 2006.12(6):918-923[J].计算机集成制造系统, 2006, 12(6):918-923
[9] 冯晓莉,仇宝云,杨兴丽,等.大型泵站运行优化方法及其应用[J]., 2011 26 (2):127—132[J].排灌机械工程学报, 2011, 26(2):127-132