To solve the rate of uncertainty during the artificial trial of hydrological model and explore parameter estimation of global optimal solution,Shuffled Complex Evolution-University of Arizona (SCE-UA)algorithm is applied to optimize the parameters of both three-component Xin'anjiang model and vertically-mixed runoff model in this paper. The optimization process has developed two-model parameters boundary and selected SCE-UA algorithm parameter chiefly containing the complex number of p and established the objective function based on three elements of peak,magnanimity,flow process. By case analysis,the result shows that SCE-UA algorithm is applicable to both three-component Xin'anjiang model and vertically-mixed runoff model parameters adjustment and the precision under SCE-UA optimization of vertically-mixed runoff model is higher than those of three-component Xin'anjiang model.
WANG Wei, FENG Zhong-lun, YANG Wei, LIN Hong-xiao, WANG Gang, DIAO Yan-fang.
Application of SCE-UA algorithm to optimization of Xin'anjiang and vertically-mixed runoff model parameters[J].China Rural Water and Hydropower, 2017(3): 26-30
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孔凡哲,宋晓猛,占车生,等. 水文模型参数敏感性快速定量评估的RSMSobol方法[J]. 地理学报,2011,66(9):1270-1280. [2] 郭俊,周建中,周超,等. 概念性流域水文模型参数多目标优化率定[J]. 水科学进展,2012,23(4):447-456. [3] 宋星原,舒全英,王海波,等. SCE-UA、遗传算法和单纯形优化算法的应用[J]. 武汉大学学报(工学版),2009,42(1):6-9,15. [4] Kuczera G. Efficient subspace probabilistic parameter optimization for catchment models[J]. Water Resources Research, 1997, 33(1): 177-185. [5] Sorooshian S, Duan Q Y, Gupta V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994, 158(3-4): 265-284. [6] Eckhardt K, Arnold JG. Automatic calibration of a distributed catchment model [J]. Journal of Hydrology,2001, 251(1-2): 103-109. [7] 董洁平,李致家,戴健男. 基于SCE-UA算法的新安江模型参数优化及应用[J]. 河海大学学报(自然科学版),2012,40(5):485-490. [8] 赵人俊. 流域水文模拟—新安江模型与陕北模型[M]. 北京:水利电力出版社,1984. [9] 包为民,王从良. 垂向混合产流模型及应用[J]. 水文,1997,(3):19-22. [10] 瞿思敏,包为民,张 明,等. 新安江模型与垂向混合产流模型的比较[J]. 河海大学学报(自然科学版),2003,31(4):374-377. [11] 包为民. 格林—安普特下渗曲线的改进和应用[J]. 人民黄河,1993,(9):1-3. [12] 舒 畅,刘苏峡,莫兴国,等. 新安江模型参数的不确定性分析[J]. 地理研究,2008,27(2):343-352. [13] Duan Q Y, Gupta V K, S Sorooshian. Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications, 1993, 76(3): 501-521. [14] 李向阳,程春田,武新宇,等. 水文模型模糊多目标SCE-UA参数优选方法研究[J]. 中国工程科学,2007,9(3):52-57.