以潍坊市北部超采区漏斗演变过程中浅层地下水水化学要素为依据,综合运用Radial plot图、box-whisker图、piper三线图解分析了超采区浅层地下水化学成分的演变情况,阐述了硬度、TDS的时空变化规律,揭示了近年来地下水超采影响下该区地下水水质变化规律。结果表明:①超采区水化学类型发生改变,2000年研究区浅层地下水水化学类型以Na+—K+—HCO3-、Ca2+—Mg2+—HCO3-型为主,转变为以Na+—K+—HCO3-—Cl-和Ca2+—Mg2+—HCO3-—Cl-型为主;②超采地下水改变了地下水的流场,增大了入渗补给,加剧水污染,导致总硬度和TDS浓度的增加;③从地下水化学成分的年际变化来看:Na+、K+、Cl-、HCO3-与地下水位波动基本一致,离子浓度随地下水位的变化发生改变。Ca2+、Mg2+、SO42-的含量随着地下水位的降低而升高:地下水超采导致含钙镁矿物和石膏等矿物的溶解增多,入渗量增大,离子浓度升高。
Abstract
The study analyzed the hydrochemical characteristics of groundwater in over-exploited area of northern Wei Fang and elaborated the temporal and spatial variation of hardness and TDS. Meanwhile, it revealed the law of groundwater quality under the influence of over-exploitation in recent years. It is based on the hydrochemistry elements of shallow groundwater in the over-exploited areas by the comprehensive use of radial plot, box-whisker diagram and Piper diagram. The results showed that:①Hydrochemistry type in over-exploited area changed in the recent years. The chemical types of groundwater were mainly dominated by Na+—K+—HCO3- and Ca2+—Mg2+—HCO3- in 2000, and they were Na+—K+—HCO3-—Cl- ,Ca2+—Mg2+—HCO3-—Cl- in 2012. ②Excessive exploitation of groundwater changed the flow field of groundwater, increased the infiltration recharge and pollution of water, which resulted in the increase of total hardness and TDS concentration. ③From the view of interannual variation of the groundwater chemical composition:Na+, K+, Cl- and HCO3-were the same as groundwater level, and the ionic concentration changed with the fluctuation of groundwater level. Ca2+, Mg2+ and SO42- increased with decreasing groundwater level. Over-exploitation leads to increase dissolution of minerals containing calcium and magnesium and gypsum, thereby increasing the infiltration capacity and ion concentration.
关键词
水化学特征 /
超采 /
地下水
{{custom_keyword}} /
Key words
hydrochemical characteristic /
over-exploitation /
groundwater
{{custom_keyword}} /
基金
国家自然科学基金资助项目(41202174);
高等学校博士学科点专项科研基金资助项目(20123702120020)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]崔素芳, 张保祥, 范明元, 等.肥城盆地地下水水化学演变规律研究[J].人民黄河, 2015, 37(3):75-79
[2]陈洲, 王兮之, 李保生, 等.粤北岩溶区星子河流域水化学离子特征及其时空变化分析[J].地球与环境, 2014, 42(2):145-156
[3]姜体胜, 杨忠山, 王明玉, 等.北京市南口地区浅层地下水水化学时空变化特征分析[J].地球与环境, 2011, 39(2):203-208
[4]Zabala M E, Martínez S, Manzano M, et al.Groundwater chemical baseline values to assess the Recovery Plan in the Matanza-Riachuelo River basin, Argentina[J].Science of the Total Environment, 2015, 541(1):1516-1530
[5] 王雅欣, 冯忠伦, 邱庆泰, 等.南水北调通水对梁济运河流域地下水化学成分影响[J].中国农村水利水电, 2015, 0(11):110-114
[6] 高树东.潍坊市地下水资源评价[D]. 河海大学, 2005.
[7] 李成军.潍坊市农业节水的战略研究[D]. 河海大学, 2005.
[8] 束龙仓.地下水水文学[M]. 中国水利水电出版社, 2009.
[9]叶宏萌, 袁旭音, 葛敏霞, 等.太湖北部流域水化学特征及其控制因素[J].生态环境学报, 2010, 19(1):23-27
[10]胡亮, 陈加希, 何艳明.硫酸盐污水的污染状况分析[J].云南冶金, 2010, 39(2):102-105
[11] 王焰新.地下水污染与防治[M].北京:高等教育出版社, 2007.
[12] 杜涛.南水北调入京后北京西南地区地下水水质演变的实验模拟研究[D]. 吉林大学, 2004.
[13] 王晓娟.银川平原地下水化学成分演化规律及其形成机制研究[D]. 长安大学, 2005.
[14]曹建荣, 徐兴永, 于洪军, 等.黄河三角洲浅层地下水化学特征与演化[J].海洋科学, 2014, 38(12):78-85
[15]姜体胜, 杨忠山, 黄振芳, 等.北京郊区浅层地下水总硬度变化趋势及其机理浅析[J].水文地质工程地质, 2010, 37(4):33-37
[16]王丽, 王金生, 林学钰.运城盆地漏斗区水文地球化学演化规律研究[J].资源科学, 2004, 26(2):23-28