摘要
选取位于黄土高原沟壑区天然荒草地董庄沟和植被恢复的杨家沟对比小流域,利用探地雷达探测、染色和注水入渗试验以及雨后土壤含水量观测,分析了黄土高原区入渗水影响深度及其与覆被、土壤和地形之间关系。结果表明,黄土层 10 ~ 20 cm 内节理、裂隙、大孔隙等垂向异质性强,且呈现沟谷向梁峁坡增大趋势; 为地下水补给提供了有利途径; 短时段降水入渗影响小于 1 m,且随着深度增加、土壤密度增大、饱和入渗系数降低,减少了入渗水向深部运动量; 林地覆盖地方大孔隙发育,增大饱和入渗系数和入渗水影响范围大; 浅表 20 cm 土壤水分随坡地成反比、与地形指数成正比,说明沟谷洼地土壤水分高,缺水量小,是主要产流区,为揭示黄土高原区不同下垫面条件下水循环规律和降雨-径流形成机制提供基础。
Abstract
Catchments of Dongzhuanggou ( DZG) and Yangjiagou ( YJG) in the gully region of Loess Plateau were selected as the research area,and DZG has been kept in the natural soil,while YJG has been reforested with vegetation. The relationship between infiltration water influencing depth and forest coverage,soil texture and topography were revealed based on the detections of ground-penetrating radar( GPR) ,dye infiltration experiments and monocyclic infiltration experiments. The results show that the ertical heterogeneity formed by the joint,fractures and big pore formation within 10 ~ 20 cm loess is strong,and it shows increasing trend from valley to gully slope. With the increasing soil depth in the range of 0 ~ 1 m below the surface,the soil density increases and the saturated permeability coefficient decreases. The reduction of saturated infiltration coefficient in the forest covered catchment is smaller than the brush covered catchment,which because of large pores development in the forest covers catchment. The soil moisture changes strongly within the scope of the 20 cm,and is proportional to the topographic index. Based on these conclusions,the supplied channels of deep groundwater and the runoff region near the valleys are inferred.They provide the basis for revealing water cycle rules and rainfall-runoff formation mechanisms in different underlying surface conditions of loess plateau areas.
基金
国家自然科学基金重大项目( 51190091)
{{custom_fund}}
陶 敏,陈 喜,张志才,刘金涛,朱 泽,韩小乐.
黄土高原区不同地貌类型下入渗水深度研究 ———以南小河沟为例[J].中国农村水利水电, 2017(6): 87-91
TAO Min,CHEN Xi,ZHANG Zhi-cai,LIU Jin-tao,ZHU Ze,HAN Xiao-le.
The Effect of Geomorphology on Infiltration Depth in the Loess Plateau
———A Case of Nanxiaohegou[J].China Rural Water and Hydropower, 2017(6): 87-91
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王万忠,焦菊英.黄土高原降雨侵蚀产沙与黄河输沙[M].北京: 科学出版社,1996.[2] 李玉山.黄土高原森林植被对陆地水循环影响的研究[J].自然资
源报,2001,16( 5) : 427-432.[3] 刘海松,倪万魁,杨泓全,等.黄土路基降雨入渗现场试验[J].地球科学与环境报,2008,30( 1) : 60-63.[4] 丁 勇.人工降雨模拟作用下的黄土高边坡稳定性研究[D].西安: 西北大学,2011.[5] 陈宝群.陕北黄土高原土壤水环境变化与植被建设[D]. 西安: 陕西师范大学,2007[6] 穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J]. 土壤学报,2003,40( 2) : 210-217.[7] 沈 冰,王文焰,沈 晋.短历时降雨强度对黄土坡地径流形成影响的实验研究[J].水利学报,1995,( 3) : 21-27.[8] 陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003,14( 4) : 513-520.[9] 张书函,康绍忠,蔡焕杰,等.天然降雨条件下坡地水量转化的动力学模式及其应[J].水利学报,1998,( 4) : 55-62.[10] 王红闪,黄明斌,张 橹.黄土高原植被重建对小流域水循环的影响[J].自然资源学报,2004,19( 3) : 344-350.[11] 郭正堂,侯甬坚.黄土高原全新世以来自然环境变化概况[M]∥北京: 中国科学院地质与地球物理研究所第十届学术年会论文集,2010: 1-47.[12] 王云强.黄土高原地区土壤干层的空间分布与影响因素[D].北京: 中国科学院研究生院,2010.[13] 石 辉,王 峰,李秧秧.黄土丘陵区人工油松林地土壤大孔隙定量研究[J].中国生态农业学报,2007,15( 1) : 28-32.[14] 余 凯,赵传燕,荐圣淇,等.黄土丘陵区典型植物种群下土壤大孔隙特征及其影响因素研究[J].干旱区资源与环境,2013,27( 6) : 67-74.