感潮河段双向波退水曲线耦合模型研究

张卫国,赵思远,顾巍巍,郝振纯

PDF(338 KB)
中国农村水利水电 ›› 2017 ›› (9) : 109-111.
水环境与水生态

感潮河段双向波退水曲线耦合模型研究

  • 张卫国1,赵思远1,顾巍巍1,郝振纯2
作者信息 +

Research on the Bi-directional Recession Ccurve Coupling Model for Tidal Reach

  • ZHANG Wei-guo1,ZHAO Si-yuan1,GU Wei-wei1,HAO Zhen-chun2
Author information +
稿件信息 +

摘要

将感潮河段退水曲线视作上游洪水波退水与下游潮水波顶托两种独立过程双向运动的叠加,根据洪水波退水公式和调和分析方程建立感潮河段双向波退水曲线耦合模型。以姚江入江口段姚江大闸次洪退水过程为研究对象,对2008~2016年15场次洪水退水段进行了模拟。结果表明:各次洪退水段模拟的洪水波参数取值较稳定,说明退水规律较好;潮水波比重系数的大小与河道水位、降水以及天文大潮的出现有关;双向波退水曲线耦合模型能够较好地模拟姚江流域出口的退水过程。

Abstract

It is assumed that flood and tidal waves in a tidal reach are independent of one another,recession stages can be considered as the superposition of bi -directional propagation. Based on the assumption,a bi -directional recession curve coupling model for tidal reach is developed according to the flood wave recession formula and harmonic analysis equation. Taking the Yaojiang River's large sluice in Yaojiang River estuary as an example,this paper simulates a recession period of 15 floods in 2008- 2016. The results show that the flood wave's parameters of every flood are stable and that the law of recession is better. The coefficient of the proportion of the tidal wave is related to the water level,precipitation and highest astronomical tide. The bi-directional recession curve coupling model can better simulate the recession process of Yaojiang River drainage basin.

基金

浙江省水利厅科技项目( RA1502) ; 国家自然科学基金 项 目 ( 41371047 ) ; 国 家 重 点 研 发 计 划 项 目 ( 2016YFC0402704)

引用本文

导出引用
张卫国,赵思远,顾巍巍,郝振纯. 感潮河段双向波退水曲线耦合模型研究[J].中国农村水利水电, 2017(9): 109-111
ZHANG Wei-guo,ZHAO Si-yuan,GU Wei-wei,HAO Zhen-chun. Research on the Bi-directional Recession Ccurve Coupling Model for Tidal Reach[J].China Rural Water and Hydropower, 2017(9): 109-111

参考文献

[1]Wittenberg H, Sivapalan M. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation[J]. Journal of Hydrology, 1999, 219(1): 20-33.
[2]Zecharias Y B, Brutsaert W. Recession characteristics of groundwater outflow from mountainous watersheds[J]. Water Resources Research, 1988, 24(10): 1651-1658.
[3]李建柱,冯平,王勇.地下径流退水过程规律[J].天津大学学报(自然科学与工程技术版),2010,43(5): 400-405.
[4]苏菊.基流分割的简便计算法[J].武汉大学学报(工学版),1986,19(4): 10-17.
[5]朱成涛,蹇德平,何朝晖等.基于随时间变化退水系数的枯季径流预报方法研究[J].人民长江,2010,41(3): 31-33.
[6]张端虎.基于非线性回归的流域洪水退水曲线拟合方法研究[J].广东水利水电,2012(7): 25-27.
[7]翟然,王国庆,万思成等.清流河流域场次洪水的退水特征及过程模拟[J].水资源与水工程学报,2015,26(3): 1-4.
[8]包为民,张小琴,瞿思敏等.感潮河段双向波水位演算模型验证[J].水科学进展,2009,20(6): 794-799.
[9]王淑英,黄国如,周维.考虑水位分级和退水段独立的感潮河段双向波水位演算[J].水利水运工程学报,2011(2): 54-59.
[10]徐汉兴.潮汐计算[M].北京:人民交通出版社,1998.
PDF(338 KB)

501

访问

0

引用

详细情况

段落导航
相关文章

/