考虑摩擦系数和颗粒强度劣化效应的堆石体湿化细观数值模拟

黄绪武,周 伟,马 刚,陈 远,常晓林

PDF(869 KB)
中国农村水利水电 ›› 2017 ›› (9) : 125-131.
水工建筑

考虑摩擦系数和颗粒强度劣化效应的堆石体湿化细观数值模拟

  • 黄绪武1,2,周 伟1,2,马 刚1,2,陈 远1,2,常晓林1,2
作者信息 +

Numerical Simulation of Rockfill Wetting Considering Deterioration of Friction Coefficient and Bond Strength

  • HUANG Xu-wu1,2,ZHOU Wei1,2,MA Gang1,2,CHEN Yuan1,2,CHANG Xiao-lin1,2
Author information +
稿件信息 +

摘要

堆石体遇水之后,水的润滑作用会导致颗粒之间的滑移和重新排列,水的软化作用则会导致颗粒破碎增加。在考虑颗粒破碎的连续-离散耦合分析方法(FDEM)中,引入代表水对于堆石体颗粒间摩擦系数和颗粒强度劣化作用的湿化模型,并按照室内单线法湿化试验的步骤进行了一系列数值试验。数值试验得到的湿化轴向应变与室内试验接近,表明水对于颗粒间摩擦系数和颗粒强度的劣化作用是产生湿化轴向应变的主要原因。堆石体颗粒间摩擦系数的降低是引起湿化轴向应变的主要原因,其次是颗粒强度的降低。湿化过程中的颗粒破碎分布呈现出局部集中的现象。湿化后颗粒之间的平均法向接触力略有增加而平均切向接触力则下降明显。

Abstract

Due to wetting, water enables a lubrication at inter-particle contact points which leads to rockfill particles’ sliding and rearrangement. What’s more, water can reduce bond strength, thus causing particle breakage to increase. A wetting model that represents water’s weakening effect to the contact friction and bond strength is then introduced to the finite-discrete element method(FDEM) considering particle breakage. A series of numerical tests were performed according to the steps of single-line indoor wetting tests. The numerical tests’ results are close to that of indoor tests which shows that water’s weakening effect to the contact friction coefficient and bond strength is the main mechanism that causes axial strain in the wetting process. Water’s weakening effect to the contact friction coefficient is the main mechanism that causes axial strain in the wetting process and water’s weakening effect to the bond strength plays a secondary role. The distribution of particle breakage can be characterized by a phenomenon of local crisis. Average normal contact force is a slight larger and tangential force is evidently smaller after wetting than that before wetting. Key words: rockfill; finite-discrete element method; wetting deformation; particle breakage; contact force

基金

国 家 自 然 科 学 基 金 资 助 项 目 ( 51322905,51579193,51509190 ) ; 中国博士后科学基金面上 资 助( 2016T907272)

引用本文

导出引用
黄绪武,周 伟,马 刚,陈 远,常晓林. 考虑摩擦系数和颗粒强度劣化效应的堆石体湿化细观数值模拟[J].中国农村水利水电, 2017(9): 125-131
HUANG Xu-wu,ZHOU Wei,MA Gang,CHEN Yuan,CHANG Xiao-lin. Numerical Simulation of Rockfill Wetting Considering Deterioration of Friction Coefficient and Bond Strength[J].China Rural Water and Hydropower, 2017(9): 125-131

参考文献

[1] 李全明, 于玉贞, 张丙印,等. 黄河公伯峡面板堆石坝三维湿化变形分析[J]. 水力发电学报, 2005, 24(3):24-29.
[2] Neves E M D, Pinto A A V, Naylor D J, et al. A back-analysis of Beliche Dam[J]. Géotechnique, 1997, 51(4):377-381.
[3] 程展林, 左永振, 丁红顺,等. 堆石料湿化特性试验研究[J]. 岩土工程学报, 2010(2):243-247.
[4] 彭凯, 朱俊高, 王观琪. 堆石料湿化变形三轴试验研究[J]. 中南大学学报(自然科学版), 2010, 41(5):1953-1960.
[5] 沈广军, 殷宗泽. 粗粒料浸水变形分析方法的改进[J]. 岩石力学与工程学报, 2009, 28(12):2437-2444.
[6] 左永振, 程展林, 姜景山,等. 粗粒料湿化变形后的抗剪强度分析[J]. 岩土力学, 2008, 29(s1):563-566.
[7] 魏松, 朱俊高. 粗粒料三轴湿化颗粒破碎试验研究[J]. 岩石力学与工程学报, 2006, 25(6):1252-1258.
[8] Ulusay R, Karakul H. Assessment of basic friction angles of various rock types from Turkey under dry, wet and submerged conditions and some considerations on tilt testing[J]. Bulletin of Engineering Geology & the Environment, 2015, 28:1-17.
[9] 尤明庆, 陈向雷, 苏承东. 干燥及饱水岩石圆盘和圆环的巴西劈裂强度[J]. 岩石力学与工程学报, 2011, 30(3):464-472.
[10] Mohamad E T, Latifi N, Arefnia A, et al. Effects of moisture content on the strength of tropically weathered granite from Malaysia[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(1):1-22.
[11] Hashiba K, Fukui K. Effect of Water on the Deformation and Failure of Rock in Uniaxial Tension[J]. Rock Mechanics and Rock Engineering, 2015, 48(5):1-11.
[12] 杨贵, 刘汉龙, 朱俊高. 粗粒料湿化变形数值模拟研究[J]. 防灾减灾工程学报, 2012(5):535-538.
[13] Silvani C, Bonelli S, Philippe P, et al. Buoyancy and local friction effects on rockfill settlements: A discrete modelling[J]. Computers & Mathematics with Applications, 2008, 55(2):208-217.
[14] 马刚, 周伟, 常晓林,等. 考虑颗粒破碎的堆石体三维随机多面体细观数值模拟[J]. 岩石力学与工程学报, 2011, 30(8):1671-1682.
[15] 马刚, 周伟, 常晓林,等. 颗粒劣化效应的堆石料流变细观数值模拟[J]. 岩土力学, 2012(S1):257-264.
[16] Ma G, Zhou W, Chang X L. Modeling the particle breakage of rockfill materials with the cohesive crack model[J]. Computers & Geotechnics, 2014, 61(61):132-143.
[17] Baud P, Zhu W, Wong T F. Failure mode and weakening effect of water on sandstone[J]. Journal of Geophysical Research Solid Earth, 2000, 105(B7):16371–16389.
[18] Zhao Z, Song E X. Particle mechanics modeling of creep behavior of rockfill materials under dry and wet conditions[J]. Computers & Geotechnics, 2015, 68:137-146.
[19] 左永振. 粗粒料的蠕变和湿化试验研究[D]. 长江科学院, 2008: 40-52
[20] Nguyen O, Repetto E A, Ortiz M, et al. A cohesive model of fatigue crack growth[J]. International Journal of Fracture, 2001, 110(110):351-369.
[21] Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science & Technology, 1996, 56(4):439-449.
[22] Mollon G, Zhao J. Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials[J]. Granular Matter, 2012, 14(5):621-638.
[23] Azéma E, Radja? F. Stress-strain behavior and geometrical properties of packings of elongated particles[J]. Physical Review E, 2010, 81(5 Pt 1):703-708.
[24] 日本土质工学会. 粗粒料的现场压实[M]. 郭熙灵,文 丹,译. 北京:中国水利水电出版社,1998.
[25] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
PDF(869 KB)

访问

引用

详细情况

段落导航
相关文章

/