破碎花岗岩非达西渗流的试验研究

贺香兰,周佳庆,魏 凯,王 敏

PDF(860 KB)
中国农村水利水电 ›› 2017 ›› (9) : 150-155.
水工建筑

破碎花岗岩非达西渗流的试验研究

  • 贺香兰1,2,周佳庆1,2 ,魏 凯1,2,王 敏1,2
作者信息 +

Experimental Research on the Non-Darcy Flow in Cataclastic Granite

  • HE Xiang-lan1,2,ZHOU Jia-qing1,2,WEI Kai1,2,WANG Min1,2
Author information +
稿件信息 +

摘要

为研究破碎岩体的渗流特性和非达西流的判别准则,利用Triaxial Cell三轴试验系统将三组饱和完整花岗岩进行破碎,获取破碎岩体,开展不同围压条件下高水力梯度的渗流试验。试验结果表明,采用Forchheimer方程拟合水力梯度▽P和渗流流量Q的实测数据点,相关系数趋近于1,渗流表现出显著的非线性;随着围压的增大,Forchheimer方程拟合系数A与B呈上升趋势,即岩样渗透性降低,渗流非线性增强,并且破碎花岗岩的非达西系数β随着固有渗透率k的减小近似呈幂函数关系增大。利用该幂函数关系式提出一类能直观判定达西流和非达西流的指标参数——水力梯度比ΦP和流量比ΦQ,指标参数的选择和临界值的确定取决于不同工程的目标需求。

Abstract

In order to explore water flow in cataclastic rock and the criterion for non-Darcy flow,three intact granite samples were broken by the means of triaxial compression test,and then water flow tests were conducted in a triaxial cell under different confining stresses. The experiment results show that Forchheimer Equation adequately describes the relation between pressure gradient ( P) and flow rate ( Q) ,because all the correlation coefficients come close to 1. In other words,significant nonlinearity can be obtained in the water flow in cataclastic granite. Moreover,for a granite sample,Forchheimer Equation coefficients A and B gradually increase with an increase in confining stress,which means rock’s permeability becomes lower and non -Darcy effect in seepage becomes stronger. More specifically,the non -Darcy coefficient ( β) approximately increases as a power function of decreasing intrinsic permeability ( k) of cataclastic granite. Based on the power function,an intuitive criterion is proposed for distinguishing between Darcy flow and non-Darcy flow,which relies on the pressure gradient ratio ( ΦP ) or flow rate ratio ( ΦQ ) . How to choose a proper parameter from ΦP and ΦQ and then how to determine corresponding critical values depend upon the goal-oriented requirements for different projects.

基金

国家自然科学基金项目( 51579188,51409198)

引用本文

导出引用
贺香兰,周佳庆,魏 凯,王 敏. 破碎花岗岩非达西渗流的试验研究[J].中国农村水利水电, 2017(9): 150-155
HE Xiang-lan,ZHOU Jia-qing,WEI Kai,WANG Min. Experimental Research on the Non-Darcy Flow in Cataclastic Granite[J].China Rural Water and Hydropower, 2017(9): 150-155

参考文献

[1] 黄先伍,唐 平,缪协兴,等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学,2005,26( 9) : 1 385-1 388.[2] 李顺才,缪协兴,陈占清,等. 承压破碎岩石非 Darcy 渗流的渗透特性试验研究[J]. 工程力学,2008,25( 4) : 85-92.[3] Thauvin F,Mohanty K K. Network modeling of non - Darcy flow through porous media[J]. Transport in Porous Media,1998,31( 1) :19-37.[4] 胡大伟,周 辉,谢守益,等. 峰后大理岩非线性渗流特征及机制研究[J]. 岩石力学与工程学报,2009,28( 3) : 451-458.[5] Zhou J Q,Hu S H,Fang S,et al. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80: 202-218.[6] 孟如真,胡少华,陈益峰,等. 高渗压条件下基于非达西流的裂隙岩体渗透特性研究[J]. 岩石力学与工程学报,2014,33( 9) :1 756-1 764.[7] 李 健,黄冠华,文 章,等. 两种不同粒径石英砂中非达西流动的实验研究[J]. 水利学报,2008,39( 6) : 726-732.[8] Zimmerman R W,Al - yaarubi A,Pain C C,et al. Non - linear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41: 163-169.[9] Javadi M,Sharifzadeh M,Shahriar K,et al. Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes[J]. Water Resources Research,2014,50 ( 2) :1 789-1 804.[10] 周创兵,陈益峰,姜清辉,等. 复杂岩体多场广义耦合分析导论[M]. 北京: 中国水利水电出版社,2008. [11] Zeng Z,Grigg R. A criterion for non -Darcy flow in porous media[J]. Transport in Porous Media,2006,63( 1) : 57-69.[12] Macici P,Mesini E,Viola R. Laboratory measurements of non -Darcy flow coefficients in natural and artificial unconsolidated porous media[J]. Journal of Petroleum Science and Engineering,2011,77 ( 3) : 365-374.[13] Liu R,Li B,Jiang Y. Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness,and number of intersections[J]. Advances in Water Resources,2016,88: 53-65.[14] Chen Y F,Zhou J Q,Hu S H,et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology,2015,529: 993-1 006.[15] Firdaouss M,Guermond J L,Quéré L P. Nonlinear corrections to Darcy ' s law at low Reynolds numbers[J]. Journal of Fluid Mechanics,1997,343: 331-350.[16] 许 凯,雷学文,孟庆山,等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报,2012,31( 1) : 164-170.[17] Geertsma J. Estimating the coefficient of inertial resistance in fluid flow through porous media[J]. Society of Petroleum Engineers Journal,1974,14( 5) : 445-450.[18] Zhou J Q,Hu S H,Chen Y F,et al. The friction factor in the forchheimer equation for rock fractures[J]. Rock Mechanics and Rock Engineering,2016,49( 8) : 3 055-3 068.[19] Li D,Engler T W. Literature review on correlations of the non-Darcy coefficient[C] ∥ SPE Permian Basin Oil and Gas Recovery Conference. Society of Petroleum Engineers,2001.[20] 王 媛,秦 峰,夏志皓,等. 深埋隧洞涌水预测非达西流模型及数值模拟[J]. 岩石力学与工程学报,2012,31( 9) : 1 862 -1 868.
PDF(860 KB)

访问

引用

详细情况

段落导航
相关文章

/