为提高管网二次加氯后消毒剂与水的混合均匀性,开发了基于螺旋流的药剂快速、低损的混合管件。通过建立混合管件的物理模型,采用Mixture多相流模型和Realizable k-ε湍流模型进行CFD数值计算,分析了混合管件的混合机理,对混合管件内导流叶不同参数下的混合效果和压力损失进行了对比研究。结果表明:水流在流经混合管件后能够改变流体的流线,使流体从一维运动变为三维运动,在管道横截面形成漩涡,促进混合效果。通过分析管道各个横截面的不均匀系数cov值可知,导流叶个数为3个时,混合效果最佳,压力损失约为157Pa;导流叶包角在20~30°内,提高包角角度能改善混合效果,但当包角度超过30°后,混合效果趋于稳定;导流叶高度在0.2~0.35倍管径时,导流叶高度越高,混合效果越好,但压力损失也随之增大。
Abstract
In this study, in order to improve the mixing uniformity of the disinfectant in water after the secondary chlorination of the pipe network, a new type of mixing pipe fitting with high efficiency and low loss was developed. Through the establishment of physical model, the CFD numerical simulation optimization was carried out using the mixture multiphase flow model and the Realizable k-ε turbulence model. The mixing mechanism of this device was analyzed, and the mixing effect and the pressure loss under the different parameters of the guide vanes were estimated. The results show that, the streamline of the multiphase flow could be changed after flowing through the pipe fitting, and the fluid changes from one-dimensional motion to three-dimensional motion. The mixing effect was promoted by the vortex formed in the cross-section of the pipeline. By analyzing the COV of each cross-section of the pipe, the optimum number of guide vanes for the mixing effect was 3, and its pressure loss was about 157Pa.The mixing effect was enhanced rapidly with the increasing of wrap angle in the range from 20°~30°. When the angle was more than 30°, the mixing effect tended to be stable. When the guide vane height was 0.2 ~ 0.35 times the diameter, the higher the height of guide vanes, the better the mixing effect, moreover, the pressure loss also increased.
基金
国家自然科学基金青年基金项目( 51408397) ; 城市水资源与水环境国家重点实验室开放项目( QA201519) ; 太原理工大学青年基金( 2013T082)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]童祯恭.输配水管网二次加氯的优化[J].中国给水排水, 2009, 25(19):98-100
[2]钱昊, 信昆仑, 文碧岚.供水管网二次加氯点选址方法对比分析[J].给水排水, 2016, 42(2):112-117
[3]Propato M, Uber J G.Linear Least-Squares Formulation for Operation of Booster Disinfection Systems[J].Journal of Water Resources Planning & Management, 2004, 130(1):53-62
[4] 刘渊.城市供水管网多点加氯的优化设计及运行研究[D]. 太原理工大学, 2006.
[5] 刘楠.新型管道快速混合技术研究[D]. 哈尔滨工业大学, 2008.
[6]朱慧峰, 童俊, 叶秋明, 等.饮用水中二氧化氯消毒副产物的分布与控制对策[J].净水技术, 2016, 35(1):107-110
[7] Kwon J H, Jung J H, Hai D L, et al.Development of a hydrodynamic static mixer for mixing chemicals in ballast water treatment systems.[J].Journal of Water Process Engineering, 2015, 8(1):209-220
[8]偶国富, 郑智剑, 金浩哲.叶片式静态混合器多相流动特性的数值分析[J].高校化学工程学报, 2016, 30(1):40-47
[9] 王福军.计算流体动力学分析[M]. 清华大学出版社, 2004.
[10]王修纲, 郭瓦力, 吴剑华.静态混合器中液液分散的实验及模拟[J].化工学报, 2012, 63(3):767-774
[11] Montante G, Coroneo M, Paglianti A.Blending of miscible liquids with different densities and viscosities in static mixers[J].Chemical Engineering Science, 2015, 141(1):250-260
[12] 张春梅.SK型静态混合器流动特性研究[D]. 天津大学, 2009.
[13] 尹红霞.内置翼片静态混合器的三维流场模拟及结构优化[D]. 哈尔滨工业大学, 2006.