多源观测在水文数据同化中的应用

杨楚慧,林 琳,张秋汝,史良胜

PDF(605 KB)
中国农村水利水电 ›› 2017 ›› (9) : 52-56.
水文水资源

多源观测在水文数据同化中的应用

  • 杨楚慧,林 琳,张秋汝,史良胜
作者信息 +

Application of Multivariate Observations in Hydrological Data Assimilation

  • YANG Chu-hui,LIN Lin,ZHANG Qiu-ru,SHI Liang-sheng
Author information +
稿件信息 +

摘要

为理解观测信息对水文数据同化性能的作用,建立了基于分布式水文模型SWAT的集合卡尔曼滤波(EnKF)算法,通过虚拟实验讨论径流、土壤水、地下水位等观测的影响。研究结果表明:当以流域出口点的径流为唯一观测时,可以较为准确地估计径流和参数CN2,但对深层土壤水估计效果有限;浅层含水量观测可以用于估计暴雨径流,但模拟垂向水分运动时会产生偏差,不能改善整个径流过程估计;由于地下水位的变化可以在一定程度上反映土壤的垂向运动信息,补充地下水位观测可以提高土壤水的估计效果。因此,采用多源观测能更为精确地模拟径流和土壤水分状态,可以考虑使用成本低、易获取的地下水观测来反映深层土壤水的变化情况。

Abstract

Aims to investigate how observation datasets affect performance of data assimilation. The Ensemble Kalman Filter ( EnKF) is coupled with the distributed hydrologic model Soil Water Assessment Tool ( SWAT) to assimilate observations including streamflow,soil moisture,and water table. Results shows are as follows: when adding downstream streamflow separately,predictions of streamflow and CN2 are accurate,but soil moisture estimates of deep layers are biased. Adding surface soil moisture observation could predict storm runoff,but distort vertical moisture movement and base flow. Complementary groundwater information could reflect vertical movement of soil moisture, and improve estimates of soil moisture. Therefore,multivariate observations lead to more accurate model states,and low-cost and available groundwater observation is moderately useful when assimilating soil water.

基金

国家自然科学基金“农业小流域土壤水文过程的数据同 化研究”( 51279141)

引用本文

导出引用
杨楚慧,林 琳,张秋汝,史良胜. 多源观测在水文数据同化中的应用[J].中国农村水利水电, 2017(9): 52-56
YANG Chu-hui,LIN Lin,ZHANG Qiu-ru,SHI Liang-sheng. Application of Multivariate Observations in Hydrological Data Assimilation[J].China Rural Water and Hydropower, 2017(9): 52-56

参考文献

[1]芮孝芳, 蒋成煜, 张金存.流域水文模型的发展[J].水文, 2006, 26(3):22-26
[2]代俊峰, 崔远来.SWAT模型及其在灌区管理中的应用前景[J].中国农村水利水电, 2006, (06):34-36
[3]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展, 1997, 8(1):94-98
[4]Muleta M K, Nicklow J W.Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model[J].Journal of hydrology, 2005, 306(1):127-145
[5]Lei F, Huang C, Shen H, et al.Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China[J].Advances in Water Resources, 2014, 67:32-45
[6]Xie X, Zhang D.Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[J].Advances in Water Resources, 2010, 33(6):678-690
[7]Chen F, Crow W T, Starks P J, et al.Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture[J].Advances in Water Resources, 2011, 34(4):526-536
[8]Sun L, Seidou O, Nistor I, et al.Simultaneous assimilation of in situ soil moisture and streamflow in the SWAT model using the Extended Kalman Filter[J].Journal of Hydrology, 2016, 543: 671-685
[9]Lee H, Seo D J, Koren V.Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: Effects of uncertainties in the data and initial model soil moisture states[J].Advances in Water Resources, 2011, 34(12):1597-1615
[10]Shi Y, Davis K J, Zhang F, et al.Parameter estimation of a physically based land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment[J].Water resources research, 2014, 50(1):706-724
[11]Shi Y, Davis K J, Zhang F, et al.Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: A multivariate real-data experiment[J].Advances in Water Resources, 2015, 83:421-427
[12]Neitsch S, Arnold J, Kiniry J, et al.SWAT2009 Theoretical Documentation[J].Texas Water Resources Institute Technical Report, 2011, :1-2
[13]王晓朋, 乔飞, 雷坤, 等.SWAT模型在我国的研究和应用进展[J].中国农村水利水电, 2015, (05):109-113
[14]王中根, 刘昌明, 黄友波.SWAT模型的原理, 结构及应用研究[J].地理科学进展, 2011, 22(1):79-86
[15]Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementation[J].Ocean dynamics, 2003, 53(4):343-367
PDF(605 KB)

516

访问

0

引用

详细情况

段落导航
相关文章

/