用改进的基于标准差的模糊层次分析法确定河湖水系连通评价体系中指标和子系统的权重,用集对分析法构造评价样本与评价标准等级之间联系数分量,建立基于联系数的河湖水系连通评价模型(CN -AM)。CN-AM模型既可测度整体状态的高低程度,又可识别影响系统的重要指标和子系统。CN-AM在南渡江应用结果表明:①利用属性数学的置信度准则评判方法与联系数的均分原则评判方法进行互补,保障评价结果的可靠性。②未来5年南渡江水系连通性子系统等级为2.6976-2.6978,自然功能和社会功能子系统的等级为3.5978-3.7403和3.6158-3.6920,南渡江河湖水系连通系统的总体状况为3.4625-3.5687级,处于中和良之间;主要限制指标为河频率、水系连通度、年平均径流保证率、水体纳污能力、河流水质达标率、地表水农业供水百分比、水库调节能力指数和地表水城镇供水百分比。
Abstract
By the improving analytic hierarch process method to determine the weights of indicators and subsystems in interconnected river system network (IRSN), construct the connection number of components between the evaluation samples and the evaluation criteria, the evaluation model (CN-AM) of IRSN is constructed. CN-AM model not only can measure the overall state of the level, but also can identify the important indicators of the system and subsystems.Application of CN-AM in Nandu River: ①The reliability of the evaluation results is ensured by using the method of evaluation of the confidence criterion of attribute mathematics and the principle of equalization of the number of connections.②In the next 5 years, the connectivity subsystems of the Nandu river system are 2.6976-2.6978, the natural function and social function subsystems are 3.5978-3.7403 and 3.6158-3.6920. The overall condition of the Nandu river system is 3.4625-3.5687,between the middle and the good.The main limiting indicators are river frequency, water connectivity, annual average runoff guarantee rate, water body pollutant capacity, river water quality compliance rate, surface water agricultural water supply percentage, reservoir regulation ability index and surface water urban water supply percentage.
基金
国家自然科学基金( 51569009,51509127) ; 水利部公益性行业科研专项经费项目( 201401048) ; 海南省自然科学基金( 414192,20164157) ; 海南省科协青年科技英才
学术创新计划项目( HAST201629) ; 海南大学科研启动基金项目( kyqd1417) ; 海南省哲学社会科学规划课题
[HNSK( QN) 13-04]
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 符传君,陈成豪,李丽等;河湖水系连通内涵及评价指标体系研究[J].水力发电,2016.42(7):2-7.
[2] 宋润朋;区域水安全系统动力学仿真与评价研究[M].合肥工业大学,2009.
[3] Feng L H, Huang C F.A risk assessment model of water shortage based on information diffusion technology and its application in analyzing carrying capacity of water resources[ J] . Water Resour Manage , 2008 , (22):621-633.
[4]吴开业,金菊良,魏鸣;流域水安全预警评价的智能集成模型[J].水科学进展,2009,20(4):518-525.
[5] Simonovic S P.Assessment of Water Resource Through System Dynamics Simulation:From Global Issues to Region Solution[A].In: Proceedings of the 36th International Conference on System Science, Modeling Nonlinear Natural Human Systems Abstact book CD Rom full paper.2003,pp.93.
[6] Ali G V,Roy A G . Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivityin humid temperate systems[J]. Geography Compass,2009,3(1):350-374 .
[7]靳梦,窦明.城市化对水系连通功能影响评价研究——以郑州市为例[J].中国农村水利水电,2013,41(12):47-50.
[8]沈时兴,金菊良,宋松柏等; 水文水资源集对分析的理论基础探讨[J].合肥工业大学学报,2013,36(12):26-30.
[9]冯顺新,姜莉萍,冯时. 河湖水系连通影响评价指标体系研究Ⅱ—“引江济太”调水影响评价[J].中国水利水电科学研究院学报,2015,13(1):20-27.
[10]杨霄,陈刚,周祖昊等;基于河湖水系连通的高原湖泊水资源优化模式[J].中国农村水利水电,2016,(09):205-211.
[11] 李宗礼,李原元,王忠根等.河湖水系连通研究:概念框架[J].自然资源学报, 2011,26(3):163-172.
[12] 李原园,黄火建,李宗礼等.河湖水系连通实践经验与发展趋势[J].南水北调与水利科技,2014,12(4):1-5.
[13] 金菊良,吴开业等.基于联系数的河流水安全评价模型[J].水利学报,2008,39(4):401-409.
[14]徐华,邱彤等.模糊判断矩阵构造和一致性检验的同步方法[J].2010,50(6):913-916.
[15]PUZICHA H.Evaluation and avoidance of false alarm by controlling Rhine water with continuously working biotests[ J] .Water Science Technology, 1999 , 29(3):207-209.
[16]王奎超;南渡江下游河道生态需水量研究[J].广东水利水电.2008(3):39-43.
[17]邓晓军,许有朋等.城市河流健康评价指标体系构建及其应用[J].生态学报,2014,34(4):993-1000.
[18]臧超,左其亭等. 地区性河湖水系连通脆弱性评价方法及应用[J].水能电源科学,2014,32(4):28-31.
[19]蔡守华,胡欣.河流健康的概念及指标体系和评价方法[J].水利水电科技进展,2008,28(1):23-27.