两种本构模型的土石坝应力变形分析比较

赵晓龙 朱俊高 王平

PDF(522 KB)
中国农村水利水电 ›› 2018 ›› (1) : 165-169.
水工建筑

两种本构模型的土石坝应力变形分析比较

  • 赵晓龙1,2 ,朱俊高1,2 ,王 平3
作者信息 +

A Comparison of Two Constitutive Models in Stress and Deformation Analysis of Earth Rockfill Dams

  • ZHAO Xiao-long1,2 ,ZHU Jun-gao1,2 ,WANG Ping3
Author information +
稿件信息 +

摘要

分别利用邓肯-张模型与椭圆—抛物双屈服面模型对深厚覆盖层上的狮子坪心墙堆石坝进行了应力变形三维有限元计算,分析了两种本构模型应力变形计算结果的差异。结果表明,两种模型计算的坝体变形和应力分布规律基本一致,但也存在一些差异。双屈服面模型计算的坝体最大沉降比邓肯-张模型结果小2.2%。双屈服面模型计算的最大顺河向水平位移与最大竖向沉降之比为0.22,与已有多个工程监测资料比较接近,而邓肯-张模型结果则偏大,为0.37。采用心墙拱效应系数R来对心墙拱效应进行评价,结果显示邓肯-张模型计算的心墙拱效应更强烈。邓肯-张模型计算的上游坝壳小主应力降低更显著,但均未出现拉应力。

Abstract

The three-dimensional finite element analysis of stress and deformation for Shiziping Core Rockfill Dam constructed on the deep overburden layer,was performed by Duncan-Chang and ellipse-parabola double yield surface models respectively. The differences of stress and deformation calculation results between the two constitutive models are analyzed. The results show that the distribution of dam deformation and stress is roughly similar to the two models. But some differences still exist. The maximum dam settlement calculated by double yield surface model is 2.2% smaller than that calculated by Duncan-Chang model. The ratio of maximum horizontal displacement along the river to maximum settlement is 0. 22 for double yield surface model,which is close to some existing engineering monitoring data,while that by Duncan-Chang model is slightly larger,namely 0.37. The core arching effect coefficient R is adopted for the evaluation of core arching effect. It shows that core arch effect calculated by Duncan-Chang model is stronger. The decrease in minor principal stress in the upstream dam shell is more notable for Duncan-Chang model,but no tension stress appears.

关键词

邓肯-张模型 / 椭圆-抛物双屈服面模型 / 有限元 / 心墙堆石坝

Key words

Duncan-Chang model / ellipse-parabola double yield surface model / finite element method / core rockfill dam

基金

国家重点研发计划重点专项;国家自然科学基金;江苏省研究生科研与实践创新计划

引用本文

导出引用
赵晓龙 朱俊高 王平. 两种本构模型的土石坝应力变形分析比较[J].中国农村水利水电, 2018(1): 165-169
ZHAO Xiao-long, ZHU Jun-gao , WANG Ping. A Comparison of Two Constitutive Models in Stress and Deformation Analysis of Earth Rockfill Dams[J].China Rural Water and Hydropower, 2018(1): 165-169

参考文献

[1] Duncan J. M, CHANG Chin-yung Y. Non-linear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(5): 1629-1653.
[2] 殷宗泽. 一个土体的双屈服面应力—应变模型[J]. 岩土工程学报, 1988, 10(4): 64-71.
[3] 朱俊高, 周建方. 邓肯E-ν模型与E-B模型的比较[J]. 水利水电科技进展, 28(1): 4-7.
[4] Duncan J. M, Byrne P, WONG K, et al. Stress-strain and bulk modulous parameters for finite element analysis of stress and movement in soils masses[R]. Berkeley: University of California, 1980.
[5] 蒋明杰, 朱俊高. 邓肯E-ν和E-B模型分析土石坝应力变形比较[C]. 中国水利学会2014学术年会论文集. 南京: 河海大学出版社, 2014: 745-748.
[6] 史江伟, 朱俊高, 张丹, 等. 椭圆-抛物线双屈服面模型参数灵敏度分析[J]. 岩土力学, 2011, 32(1): 70-76.
[7] 张继宝, 陈五一, 李永红, 等. 双江口土石坝心墙拱效应分析[J]. 岩土力学, 2008, 29(增): 185-188.
[8] 林江, 胡万雨, 孟凡理, 等. 瀑布沟大坝心墙拱效应分析[J]. 岩土力学, 2013, 34(7): 2031-2035.
[9] 王占锐, 陈礼亮. 土石坝位移比的分析与研究[J]. 大坝观测与土工测试, 1997, 21(3): 17-20, 24.
[10] 郭金龙. 2010—2014年柴河水库大坝水平位移、沉陷研究分析[J]. 中国水能及电气化, 2016, 10: 41-45.
[11] 陈炳铸. 东圳水库大坝沉陷与水平位移分析[J]. 水利科技, 2010, 2: 37-39, 48.
[12] 郦能惠, 朱家谟, 李锡龄, 等. 克孜尔水库土石坝变形观测与资料分析[J]. 水利水运科学研究, 2000, 2: 26-32.
[13] 林加兴. 山美水库大坝变形观测资料的初步分析[J]. 大坝与安全, 2002, 6: 46-47, 50.
[14] 刘东升. 某水库大坝观测资料及其运行性状分析[J]. 黑龙江水利科技, 2015, 43(9): 40-44.
[15] 司献武, 齐峰, 代群. 鸭河口水库大坝变形观测资料分析[J]. 人民长江, 1997, 28(12): 32-34.
[16] 傅忠友, 王昭升, 盛金保, 等. 钟前水库大坝变形观测及结构稳定分析[J]. 大坝与安全, 2007, 1: 45-48.
[17] 赵永. 根据新克土石坝变形监测资料评价工程质量[J]. 水利水电工程设计, 2004, 23(3): 50-52.
[18] 李镇惠, 罗琛, 骆建宇. 三峡茅坪溪防护土石坝变形监测成果分析[J]. 长江科学院院报, 2013, 30(2): 97-102.
[19] 赵晓龙, 邱秀梅, 韩慧敏, 等. 土石坝带裂缝黏土心墙破坏机理试验研究[J]. 中国农村水利水电, 2016, 2: 134-138.
PDF(522 KB)

访问

引用

详细情况

段落导航
相关文章

/