套合流域流量关系研究——以韩江流域为例

郭博瀚 周买春 刘远

PDF(1788 KB)
中国农村水利水电 ›› 2018 ›› (11) : 48-54.
水文资源

套合流域流量关系研究——以韩江流域为例

  • 郭博瀚,周买春,刘远
作者信息 +

Research on the Relationship between Catchment Basin Flow in the Case of Hanjiang River Basin

  • GUO Bo-han,ZHOU Mai-chun,LIU Yuan
Author information +
稿件信息 +

摘要

以韩江流域九个水文站为出水口,将韩江流域划分为九个子流域,并应用SWAT模型对流域进行日径流模拟,用SWAT模型模拟流量与水文站实测流量分析相互套合的流域之间流量的关系,并建立了一个套合流域流量模型。结果表明:用套合流域流量模型推求被套合流域流量时,当被套合流域出水口位于套合流域的干流上,NS系数在84.4%~91.6%,Vol值在97.5%~107.3%,当被套合流域出水口位于套合流域干流的上一级支流,且位于该支流的主干上时,NS系数在79.3%~88.9%,Vol值在100.0%~104.6%,被套合流域出水口位于套合流域的其他支流上时,NS系数在53.3%~73.9%,Vol值在91.1%~105.2%。该套合流域流量模型,可为推求无资料地区小流域的流量提供参考。

Abstract

Taking the nine hydrological stations in Hanjiang River as the outlet,the Hanjiang River Basin is divided into nine sub-basins, and the SWAT model is applied to simulate the daily runoff of the basin. Using the simulated flow rate of SWAT model,and the measured flow rate from the hydrological station to analyze the relationship between catchment basins flow,and the Catchment Basin Flow Model is established. The results shows that when the Catchment Basin Flow Model is used to calculate the flow rate,if the outlet is located in the trunk of the catchment basin,the NS coefficient is 84.4% ~ 91.6% and the Vol value is 97.5% ~ 107.0%. If the outlet is located at the upper level branch of the trunk stream of the catchment basin,and on the main trunk of this tributary,the NS coefficient is 79.3% ~ 88.9% and the Vol value is 100.0% ~ 104.6%. If the outlet is located on the other tributaries of the catchment basin,the NS coefficient is 53.3% ~ 73.9%, and the Vol value is 89.6% ~ 105.2%. For the Hanjiang River Basin,when the outlet is located in the trunk of the catchment basin,or outlet is located at the upper level branch of the trunk stream of the catchment basin,and on the main trunk of this tributary,the simulation results of the Catchment Basin Flow Model are better. The Catchment Basin Flow Model can provide a reference for the prediction of the flow rate of small watershed in non-information areas.

关键词

SWAT 模型 / 套合流域流量模型 / 线性相关 / 韩江流域

Key words

SWAT model / Catchment Basin Flow Model / linear correlation / Hanjiang River Basin

基金

国家自然科学基金项目( 41171029) ; 广东省水利科技创 新项目( 2009-42) 。

引用本文

导出引用
郭博瀚 周买春 刘远. 套合流域流量关系研究——以韩江流域为例[J].中国农村水利水电, 2018(11): 48-54
GUO Bo-han, ZHOU Mai-chun, LIU Yuan. Research on the Relationship between Catchment Basin Flow in the Case of Hanjiang River Basin[J].China Rural Water and Hydropower, 2018(11): 48-54

参考文献

[1] 刘丽芳,刘昌明,王中根,等. 流域面积和降水量对中小流域水文 效果影响分析[J]. 北京师范大学学报( 自然科学版) ,2013,49 ( 2) : 157-163. 

[2] 贺亮亮,张淑兰,于澎涛,等. 泾河流域的降水径流影响及其空间 尺度效应[J]. 生态环境学报,2017,26( 3) : 415-421. [3] 王艳君,吕宏军,姜 彤. 子流域划分和 DEM 分辨率对 SWAT 径 流模拟的影响研究[J]. 水文,2005,28( 3) : 22-25. [4] 丁婧祎,赵文武,王 军,等. 降水和植被变化对径流影响的尺度 效应———以陕北黄土丘陵沟壑区为例[J]. 地理科学进展,2015, 34( 8) : 1 039-1 051. 

[5] 张 俊,郭生练,李超群,等. 概念性流域水文模型的比较[J]. 武汉大学学报( 工学版) ,2007,40( 2) : 1-6. 

[6] 霍文博,李致家,李巧玲. 半湿润流域水文模型比较与集合预报 [J]. 湖泊科学,2017,29( 6) . 

[7] 王艳君,吕宏军,姜 彤. 子流域划分和 DEM 分辨率对 SWAT 径 流模拟的影响研究[J]. 水文,2008,28( 3) : 22-25. [8] 李倩楠,张 静,宫辉力. 基于 SWAT 模型多站点不确定性评价 方法的比较[J]. 人民黄河,2017,39( 1) : 24-29. 

[9] Soil Conservation Service( SCS) . Hydrology In National Engineering Handbook,Supplement A,Section 4,Chap. 10,Soil Conservation Service[R]. USDA,Washungton,1985: 10. 

[10] Green W H. Studies on soil physics,1,The flow of air and water through soils[J]. Journal of Agricultural Sciences,1911,4: 11-24. 

[11] Penman H L. Evaporation: an introductory survey[J]. Netherlands Journal of Agricultural Science,1956,4. 

[12] Priestley C,Taylor R J. On the Assessment of Surface Heat Flux and Evaporation Using Large - Scale Parameters[J]. Monthly Weather Review,1972,100( 2) : 81-92. 

[13] Hargreaves G H. Reference crop evapotranspiration from temperature [J]. Applied Engineering in Agriculture,1985,1( 2) : 96-99. 

[14] Neitsch S L. SWAT 2009 理论基础[M]. 北京: 黄河水利出版社, 2012. 

[15] 广东省韩江流域管理局.流域概况[EB /OL]. ( 2010 - 07 - 19) [2015-07-06].http: ∥www.hjj.gd.cn /intro-1.html. 

[16] 刘 远,周买春,陈芷菁,等. 基于不同 DEM 数据源的数字河 网提取对比分析———以韩江流域为例[J]. 地理科学,2012,32 ( 9) : 1 112-1 118. 

[17] Shuttleworth W J,Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society,1985,111( 469) : 839-855. 

[18] Duan Q,Gupta H V,Sorooshian S,et al. Calibration of Watershed Models[M]. 2004. 

[19] 金 聪,张行南,夏达忠. SWAT 分布式模型在新兴江流域径流 模拟中的应用研究[J]. 中国农村水利水电,2017,( 1) : 97-102. 

[20] 朱炬明. 新安江、SWAT 和 BTOPMC 模型的应用比较[D]. 广州: 华南农业大学,2016. 

[21] 刘怀湘,王兆印. 典型河网形态特征与分布[J]. 水利学报, 2007,38( 11) : 1 354-1 357. 

[22] 夏 军. 水文非线性系统理论与方法[M]. 武汉大学出版社, 2002. 

[23] 夏 军. 现代水文学的发展与水文复杂性问题的研究[C]∥ 全 国水问题研究学术研讨会,2004. 

[24] 夏 军. 水文尺度问题[J]. 水利学报,1993,( 5) : 32-37.

PDF(1788 KB)

访问

引用

详细情况

段落导航
相关文章

/