西南地区某混凝土拱坝温度场有限元仿真分析

罗 滔,周先练,邱焕峰,孙超伟,傅少君

中国农村水利水电 ›› 2019 ›› (1) : 142-147.
水工建筑

西南地区某混凝土拱坝温度场有限元仿真分析

  • 罗滔1,周先练2,邱焕峰3,孙超伟1,傅少君4
作者信息 +

Finite Element Analysis of the Temperature Field of Concrete Arch Dams

  • LUO Tao1,ZHOU Xian-lian2,QIU Huan-feng2 ,SUN Chao-wei1,FU Shao-jun3
Author information +
稿件信息 +

摘要

温度和温度应力诱发拱坝开裂一直是混凝土拱坝工程中的热点问题。根据现场实测资料,基于ANSYS有限元软件,通过APDL二次开发及宏命令的运用,实现水泥水化反应、混凝土绝热温升、通水冷却、水温/气温等函数的开发。针对西南地区某混凝土拱坝模拟其施工过程,考虑分批冷却、封拱灌浆、蓄水计划等,对坝体温度场演化进行仿真分析。结果显示,拱坝温度场有限元仿真分析结果与现场监测结果规律一致。拱坝施工过程中,由于混凝土发生水化反应,导致坝体内最高温度达50℃,两次通水冷却效果明显,二冷结束后坝体内部温度降低到16℃以下。蓄水至正常水位后,坝体内部温度基本在16℃以下,坝顶表面和坝体下游面温度与气温一致,达27℃,坝体上游面温度分布受水温影响呈梯度变化,其中高程492m处温度最低,为15℃,高程540m处温度最高,为23℃。稳定运行一年后,坝体内部温度分布更加均匀、连续。

Abstract

Temperature and temperature stress induced arch dam cracking is always a hot issue in the engineering of concrete arch dams.According to the field measurement data,the development of functions about cement hydration reaction,concrete adiabatic temperature rise,water cooling air temperature and water temperature is realized by using APDL and Macro command based on ANSYS software. In order to simulate the construction process of a concrete arch dam in southwest region,the temperature field evolution of the dam is simulated and analyzed by considering batch cooling,grouting and water storage plan. The results show that the FEM simulation results of the temperature field are consistent with the field monitoring results. In the process of arch dam construction,due to the hydration reaction of concrete,the maximum temperature of dam body is up to 50 ℃,the effect of two times water cooling is obvious,and the internal temperature of dam body decreases to 16 ℃ at the end of the second water cooling. After water storage to the normal level,the internal temperature of the dam is below 16 ℃ . The temperature of top surface and the downstream surface is consistent with the air temperature,which is up to 27 ℃ . The temperature distribution of upstream surface is affected by the water temperature and is changing gradiently,wherein the lowest temperature is 15 ℃ at elevation 492m,and the highest temperature is 23 ℃ at elevation 540 m. After a year of stable operation,the internal temperature distribution of the dam is more uniform and continuous.

关键词

拱坝 / 温度场 / 施工过程 / 有限元 / 温度监测

基金

西京学院特区人才科研启动专项基金( XJ18T02) ; 贵州省科技计划项目( 黔科合基础[2016]1154)

引用本文

导出引用
罗 滔,周先练,邱焕峰,孙超伟,傅少君. 西南地区某混凝土拱坝温度场有限元仿真分析[J].中国农村水利水电, 2019(1): 142-147
LUO Tao,ZHOU Xian-lian,QIU Huan-feng,SUN Chao-wei,FU Shao-jun. Finite Element Analysis of the Temperature Field of Concrete Arch Dams[J].China Rural Water and Hydropower, 2019(1): 142-147

参考文献

[1]邱焕峰, 蒋媛媛, 傅少君, 等.小湾拱坝施工过程温度场仿真分析[J].武汉大学学报工学版, 2010, 43(6):723-726
[2]周华, 傅少君, 王国进, 等.小湾拱坝施工期温度场动态跟踪仿真[J].武汉大学学报工学版, 2009, 42(1):77-81
[3]何建平, 张怡瑞, 涂传林.向家坝水电站大体积混凝土温度场及温度应力研究[J].中南水力发电, 2009, (2):36-43
[4]周伟, 常晓林, 刘杏红, 等.基于温度应力仿真分析的碾压混凝土重力坝诱导缝开裂研究[J].岩石力学与工程学报, 2006, 25(1):122-122
[5]肖照阳, 段亚辉.白鹤滩输水系统进水塔底板混凝土温控特性分析[J].水力发电学报, 2017, 36(8):94-103
[6]漆天奇, 周伟, 常晓林, 等.观音岩大坝碾压混凝土2种设计龄期的温控特性比较[J]. 中国农村水利水电, 2017(2):163-168.
[7]邱文婧, 傅少君.碾压混凝土拱坝温度场仿真分析[J]. 中国农村水利水电, 2016(6):164-167.
[8]魏建国, 张忠, 张心斌.核电站筏基大体积混凝土温控监测及仿真分析[J]. 工业建筑, 2008(s1):1033-1035.
[9]董事尔, 刘杨, 侯立群, 等.某核电站号核岛底板大体积混凝土养护与测温技术[J].施工技术, 2011, 40(14):98-101
[10]马波, 张金.恰希玛3号机组核岛底板混凝土温度场分析[J]. 工业建筑, 2013(s1):661-663.
[11]胡锐鹏, 张戎令, 赵文斌, 等.大温差地区不同养护方式下混凝土桥墩温度场及变形性能分析[J]. 硅酸盐通报, 2017(12):4135-4141.
[12]朱伯芳.大体积混凝土温度应力与温度控制[M]. 中国电力出版社, 1999.
[13]傅少君, 张石虎, 解敏, 等.混凝土拱坝温控的动态分析理论与实践[J].岩石力学与工程学报, 2012, 31(1):113-122
[14]李涛, 张洵安, 高娃.基于ANSYS的大体积混凝土温度应力的研究[J]. 混凝土, 2010(12):43-46.
[15]金峰, 周志丹, 周元德, 等.基于平台的混凝土坝温度应力计算程序的开发与应用[J].水力发电学报, 2006, 25(4):75-78
[16]袁开强, 辛全才.基于ADINA的碾压混凝土拱坝温度仿真分析[J]. 黑龙江水利, 2017(12):37-39.
[17]余建杰, 宋固全, 吴浪.基于MIDAS的大体积混凝土桩承台温度场有限元分析[J]. 混凝土与水泥制品, 2012(5):34-37.

访问

引用

详细情况

段落导航
相关文章

/