In recent years,secondary salinization of the lower reaches of the Yellow River has been repeated and gradually intensified,
causing damage to agricultural production and ecological security. This paper takes the Xiaokaihe Irrigation District of the Yellow River Delta
as the study area. Based on the soil salt content and Landsat8 OLI multi-spectral imagery,the spectral curve characteristics of soil samples
are analyzed. According to the diagnostic index method,the band reflectance data with larger diagnostic index is an independent variable and
the salt salinity is the dependent variable,and the soil salt inversion model is constructed by multiple linear regression model and BP neural
network model. The results show that the higher the degree of soil salinization,the lower the spectral reflectance of the image and the highest
reflectance is in the near-infrared. The inversion accuracy of BP neural network model is better than that of the traditional multiple linear
regression model. It's R2 is 0.980 8 and RMSE is 1.059 5,the average relative error is 15.4%,and the fitting accuracy is high,which can
provide a basis for the salinization treatment in the irrigation district.
LIU En, WANG Jun-tao, CHANG Bu-hui, WANG Dong-qi.
Quantitative Remote Sensing Inversion of Soil Salinization
in Xiaokaihe Yellow River Irrigation District[J].China Rural Water and Hydropower, 2019(12): 20-24
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测 和治理研究[D]. 北 京: 中国科学院地理科学与资源研究所, 2001: 178-181.
[2] Bao B R M,Sankar T R,Dwivedi R S et. Spectral Behavior of salt-affected soils[J]. International Journal of Remote Sensing,1995,16 ( 12) : 2 125-2 136.
[3] Dwivedi R S. Monitoring and the Study of the Effects of Image Scale on Delineation of Salt-affected Soils in the Indo-Gangetic Piains[J]. International Jounral of Remote Sensing,1992,13( 8) : 1 527-1 536.
[4] Mougenot B,Pouget M,Epema G. Remote Sensing of Salt-affected Soils[J]. Remote Sensing Reviews,1993( 7) : 241-259.
[5] 曹建荣,刘文全.基于 landsat TM/ETM 影像的黄河三角洲盐渍土 动态变化分析[J].水土保持通报,2014,34( 6) : 180-183.
[6] 扶卿华,倪绍祥,王世新,等. 土壤盐分含量的遥感反演研究 [J].农业工程学报,2007,23( 1) : 48-54.
[7] 樊彦国,李潭潭,李祥昌.基于 Landsat8 的黄河三角洲盐渍化反演 [J〗.山东农业科学,2015,47( 2) : 119-124.
[8] 张成雯,唐家奎,于新菊,等.黄河三角洲土壤含盐量定量遥感反 演[J].中国科学院研究生院学报,2013,30( 2) : 220-227.
[9] 王多多,贾文晓,王志保,等.基于 Landsat 影像的崇明岛东滩土壤 盐分遥感反演技术[J].中国农业科技导报,2018,20( 3) : 55-63.
[10] 高大启.有教师的线性基本函数前向三层神经网络结构研究 [J].计算机学报,1998,21( 1) : 80-86.
[11] 廖宁放,高稚允. BP 神经网络用于函数逼近的最佳隐层结构 [J].北京理工大学学报,1998,18( 4) : 476-480.