基于贝叶斯理论的土体抗剪强度参数最优二维分布模型识别方法

孙 骞,冯晓波

PDF(2082 KB)
中国农村水利水电 ›› 2019 ›› (3) : 132-140.
水工建筑

基于贝叶斯理论的土体抗剪强度参数最优二维分布模型识别方法

  • 孙 骞1,2,冯晓波1,2
作者信息 +

Bayesian Approach to Identifying the Best-fit Bivariate Distribution Model for Shear Strength Parameters

  • SUN Qian1,2,FENG Xiao-bo1,2
Author information +
稿件信息 +

摘要

提出了基于贝叶斯理论的抗剪强度参数最优二维分布模型的识别方法。首先,介绍了基于Copula函数的岩土体抗剪强度参数二维分布模型的表征方法。其次,采用蒙特卡洛模拟方法验证了贝叶斯理论识别最优二维分布模型的有效性,对比了贝叶斯独立识别、非独立识别、AIC一步识别和AIC两步识别的识别能力,分析了影响贝叶斯理论识别精度的主要因素。最后,搜集了29组实际工程抗剪强度参数试验数据,研究了贝叶斯独立识别和非独立识别在实际工程抗剪强度参数最优二维分布模型识别中的应用。结果表明,贝叶斯理论能够结合先验信息有效地识别表征抗剪强度参数最优的二维分布模型;贝叶斯理论在小样本情况下的识别能力和识别精度与AIC准则相比优势明显;抗剪强度参数的样本数目、参数间相关性、备选二维分布模型集合以及先验信息都显著影响贝叶斯理论的识别精度。

Abstract

This paper proposes a Bayesian bivariate distribution identification method for shear strength parameters of soils and rocks. First,the characterization of bivariate distribution for shear strength parameters using Copulas is presented. Then,Monte Carlo simulations are conducted to validate the Bayesian bivariate distribution identification method. Moreover,the identification accuracy in the four methods is compared,and the main factors affecting the accuracy in the Bayesian bivariate distribution identification are identified. Finally,a total of twenty-nine sets of shear strength data are compiled to demonstrate the application of Bayesian theory bivariate distribution identification. The results indicate that with limited project-specific data and prior information,the Bayesian bivariate distribution identification method can successfully identify the best - fit bivariate distribution from a set of alternative bivariate distributions for shear strength parameters. In comparison with AIC,the Bayesian bivariate distribution identification method produces more accurate results for identifying the best -fit bivariate distribution. The sample size,correlation,the type of the true bivariate distribution and prior information of shear strength parameters has a significant impact on the accuracy of the Bayesian bivariate distribution selection method.

关键词

土体抗剪强度参数 / 二维分布模型 / 贝叶斯方法 / Copula函数

基金

国家自然科学基金项目( 51509188)

引用本文

导出引用
孙 骞,冯晓波. 基于贝叶斯理论的土体抗剪强度参数最优二维分布模型识别方法 [J].中国农村水利水电, 2019(3): 132-140
SUN Qian,FENG Xiao-bo. Bayesian Approach to Identifying the Best-fit Bivariate Distribution Model for Shear Strength Parameters[J].China Rural Water and Hydropower, 2019(3): 132-140

参考文献

[1] TANG X S, LI D Q, RONG G, et al. Impact of copula selection on geotechnical reliability under incomplete probability information[J]. Computers and Geotechnics, 2013, 49: 264-278.
[2] CHERUBINI C. Reliability evaluation of shallow foundation bearing capacity on soils[J]. Canadian Geotechnical Journal, 2000, 37(1): 264-269.
[3] LOW B K. Reliability-based design applied to retaining walls[J]. Geotechnique, 2005, 55(1): 63-75.
[4] NELSEN R B. An introduction to Copulas[M]. New York: Springer, 2006
[5] 唐小松, 李典庆, 周创兵, 等. 基于 Copula 函数的基桩荷载-位移双曲线概率分析[J]. 岩土力学, 2012, 33(1): 171-178.
TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Probabilistic analysis of load-displacement hyperbolic curves of single pile using Copula[J]. Rock and Soil Mechanics, 2012, 33(1): 171-178.
[6] 唐小松, 李典庆, 周创兵, 等. 基于 Copula 函数的抗剪强度参数间相关性模拟及边坡可靠度分析[J]. 岩土工程学报, 2012, 34(12): 2284-2291.
TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Modeling dependence between shear strength parameters using copulas and its effect on slope reliability[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2284-2291.
[7] 杨超, 黄达, 张永兴. 基于Copula 理论岩体质量Q 值及波速与变形模量多变量相关性研究[J]. 岩石力学与工程学报, 2014, 33(3): 507-513.
YANG Chao, HUANG Da, ZHANG Yong-xing. Multivariable correlation of rock mass quality index Q system value, wave velocity and deformation modulus based on Copula theory[J]. Chinese Journal of Rock
Mechanics and Engineering, 2014, 33(3): 507-513.
[8] LI D Q, ZHANG L, TANG X S, et al. Bivariate distribution of shear strength parameters using copulas
and its impact on geotechnical system reliability[J]. Computers and Geotechnics, 2015, 68: 184-195.
[9] HUFFMAN J C, STRAHLER A W, STUEDLEIN A W. Reliability-based serviceability limit state design for immediate settlement of spread footings on clay[J]. Soils and Foundations, 2015, 55(4): 798-812.
[10] MOTAMEDI M, LIANG R Y. Probabilistic landslide hazard assessment using copula modeling technique[J]. Landslides, 2014, 11(4): 565-573.
[11] WU X Z. Development of fragility functions for slope instability analysis[J]. Landslides, 2014, 12(1): 165-175.
[12] Li DQ, Tang XS. Modeling and simulation of bivariate distribution of shear strength parameters using copulas. In: Phoon KK, Ching J, editor, Chapter 2, Risk and Reliability in Geotechnical Engineering, London: CRC Press; 2014. p. 77–128.
[13] Ang AH-S, Tang WH. Probability concepts in engineering: emphasis on applications to civil and environmental engineering. 2nd ed. New York: John Wiley and Sons; 2007.
[14] Li DQ, Tang XS, Zhou CB, Phoon KK. Characterization of uncertainty in probabilistic model using bootstrap method and its application to reliability of piles. Appl Math Model 2015;39(17): 5310–26.
[15] Cao ZJ, Wang Y. Bayesian model comparison and characterization of undrained shear strength. J Geotech Geoenviron Eng 2014;140(6): 04014018.
[16] Wang Y, Au SK, Cao ZJ. Bayesian approach for probabilistic characterization of sand friction angles. Eng Geol 2010;114(3–4): 354–63.
[17] Wang Y, Aladejare AE. Bayesian characterization of correlation between uniaxial compressive strength and Young's modulus of rock. Int J Rock Mech Min Sci 2016;85: 10–9.
[18] Li DQ, Zhang L, Tang XS, Zhou W, Li JH, Zhou CB, et al. Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Comput Geotech 2015;68: 184–95.
[19] 唐小松, 李典庆, 周创兵, 等. 基于 Bootstrap 方法的岩土体参数联合分布模型识别[J]. 岩土力学, 2015, 36(4): 913-922.
TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Bootstrap method for joint probability distribution identification of correlated geotechnical parameters[J]. Rock and Soil Mechanics, 2015, 36(4): 913-922.
[20] AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[21] WANG Y, AU S K, CAO Z J. Bayesian approach for probabilistic characterization of sand friction angles[J]. Engineering Geology, 2010, 114(3): 354-363.
[22] WANG Y, CAO Z J. Probabilistic characterization of Young’s modulus of soil using equivalent samples[J]. Engineering Geology, 2013, 159: 106-118.
[23] CAO Z J, WANG Y. Bayesian approach for probabilistic site characterization using cone penetration tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 267-276.
[24] CAO Z J, WANG Y. Bayesian model comparison and characterization of undrained shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 04014018.
[25] CAO Z J, WANG Y. Bayesian model comparison and selection of spatial correlation functions for soil parameters[J]. Structural Safety, 2014, 49: 10-17.
PDF(2082 KB)

343

访问

0

引用

详细情况

段落导航
相关文章

/