针对峰丛喀斯特流域山坡、洼地地貌特征,构建了反映导水介质慢速、快速水流入渗补给和蓄泄特征以及山坡-洼地水力联系的半分布式水文模型。根据贵州省普定陈旗流域出口断面实测流量和洼地地下水位观测数据,对模型参数进行敏感性分析和优选,计算山坡、洼地多重径流成分。结果表明,该模型能较好地模拟流量以及地下水动态过程;山坡是流域的重要补给源,其水量占总水量的76%;山坡、洼地地表径流、快速径流、慢速径流占总水量比例分别为3.8%、71.8%,24.4%,反映了喀斯特地区裂隙管道快速流对陡涨、陡落流量过程的控制作用。
Abstract
On the basis of the geographical features of the hillslope and depression in the karst peak cluster watershed, we establish a semi-distributed hydrological model which reflects the characteristics of infiltration and storage and discharge and the hydraulic connection between hillslope and depression. The model is applied in Chenqi river basin in Guizhou province, the parametric sensitivity analysis and parameter calibration of model is according to the measured discharge of watershed outlet and the observation data of groundwater depth in depression, and calculating multiple discharge of hillslope and depression. The results show that the model has high accuracy in simulating discharge and groundwater regime process; hillslope discharge is an important supply for basin, it accounts for 76 percent of total flow; the surface and fast and slow flow account for 3.8%, 71.8%, 24.4% percent of total flow, it reflects that the fast flow controls the flow process of steep rise and fall.
关键词
峰丛喀斯特 /
半分布式水文模型 /
慢速和快速流 /
参数敏感性分析
{{custom_keyword}} /
Key words
karst peak cluster watershed /
semi-distributed hydrological model /
slow and fast flow /
parametric sensitivity analysis
{{custom_keyword}} /
基金
中英重大国际合作项目( 41571130071) ; 国家自然科学基 金 面 上 项 目 ( 41571020 ); 国家重点研发项目( 2016YFC0502602)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shoemaker W B, Kuniansky E L, Birk S, et al.Documentation of a conduit flow process (CFP) for MODFLOW-2005[J]. Techniques & Methods, 2005.
[2]González-Herrera R, Sánchez-Y-Pinto I, Gamboa-Vargas J.Groundwater-flow modeling in the Yucatan karstic aquifer,Mexico[J].Hydrogeology Journal, 2002, 10(5):539-552
[3]许波刘, 董增川, 洪娴.集总式喀斯特水文模型构建及其应用[J].水资源保护, 2017, 33(2):37-42
[4]Tritz S, Guinot V, Jourde H.Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model[J].Journal of Hydrology, 2011, 397(3–4):250-262
[5]蒙海花, 王腊春, 苏维词, 等.基于落水洞的岩溶半分布式水文模型的构建及其应用[J].地理科学, 2009, 29(4):550-554
[6] 包为民.水文预报[M]. 中国水利水电出版社, 2009.
[7] Zhang Z, Chen X, Soulsby C.Catchment‐scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 2017, 31(19).
[8] 阿维里扬诺夫.防治灌溉土地盐渍化的水平排水设施[M]. 北京: 中国工业出版社, 1963.
[9]Beldring S, Gottschalk L, Seibert J, et al.Distribution of soil moisture and groundwater levels at patch and catchment scales[J].Agricultural and Forest Meteorology, 1999, 98-99(74):305-324
[10]张志才, 陈喜, 程勤波, 等.喀斯特山体表层岩溶带水文地质特征分析——以陈旗小流域为例[J].地球与环境, 2011, 39(1):19-25
[11]Nash J E, Sutcliffe J V.River flow forecasting through conceptual models part I — A discussion of principles[J].Journal of Hydrology, 1970, 10(3):282-290
[12] Cheng Q, Chen X, Xu C, et al.Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov Chain Monte Carlo scheme[J]. Journal of Hydrology, 2014, 519: 2202-2214. DOI: 10.1016/j.jhydrol.2014.10.008.
[13]田雨, 雷晓辉, 蒋云钟, 等.水文模型参数敏感性分析方法研究评述[J].水文, 2010, 30(4):9-12
[14]Mu?oz E, Rivera D, Vergara F, et al.Identifiability analysis: towards constrained equifinality and reduced uncertainty in a conceptual model[J].Hydrological Sciences Journal, 2014, 59(9):1690-1703
[15] Duan Q, Sorooshian S, Gupta V K.Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Journal of Hydrology, 158(3–4): 265-284. DOI: 10.1016/0022-1694(94)90057-4.
[16]彭韬, 王世杰, 张信宝, 等.喀斯特坡地地表径流系数监测初报[J].地球与环境, 2008, 36(2):125-129