岩石的拉伸、拉伸剪切破坏是工程中常见的破坏类型,本文基于Hoek-Brown准则研究提出一种模拟岩石拉伸、拉剪破坏的有限元计算方法。首先,结合岩石室内试验数据分析,Hoek-Brown准则可以很好的描述岩石拉伸、拉剪的力学性质。同时,鉴于岩石拉伸、拉剪破坏大都表现出脆性破坏的特征,可采用脆塑性本构模型近似模拟这种变形破坏。接着,推导给出岩石拉伸、拉剪段的应力跌落求解方法,将其嵌入有限元计算软件ABAQUS中。然后,对室内试验进行有限元模拟,模拟曲线与试验数据拟合良好,证明Hoek-Brown准则的脆塑性本构模型可以正确反映岩石拉伸、拉剪等破坏特征。最后,将所建模型应用于某输水隧洞工程,针对特征断面分析仅采用管片衬砌的可行性,为工程的衬砌设计提供指导。
Abstract
Tensile and tensile-shear failure of rock is a common failure in engineering. Based on Hoek-Brown criterion, this paper presents a finite element method to simulate the tensile and tensile-shear failure of rock. Firstly, according to the test data of rock, Hoek-Brown criterion can well describe the mechanical properties of rock under tension and tension-shear. At the same time, brittle failure is the main feature of rock under tension and tension-shear. So, brittle-plastic constitutive model is used to simulate the deformation and failure. Then, the solution method of stress drop is deduced, which is embedded in the finite element software ABAQUS. Then, the finite element simulation of the indoor test is carried out. The simulation curve fits well with the test data, the brittle-plastic constitutive model of Hoek-Brown can correctly reflect the failure characteristics of rock such as tension, tension-shear. Finally, the model is applied to a water conveyance tunnel project to analyze the feasibility of using segment lining on characteristic section, which provides guidance for the lining design of the project.
关键词
Hoek-Brown准则 /
拉—拉剪破坏 /
有限元模拟 /
脆塑性
{{custom_keyword}} /
Key words
Hoek-Brown criterion /
tension and tension-shear failure /
numerical simulation /
ductile-brittle
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭静芸, 李晓, 李守定, et al.拉伸剪切条件下岩石的工程地质力学特性. 工程地质学报, 2012, 20(6):1020-1027.
[2] 黄志平, 朱万成, 张鹏海, et al. 深部硬岩开挖隧洞围岩稳定性数值模拟. 地下空间与工程学报, 2017(S2):113-120.
[3] Zhong H, Lin G, Li H J . DAMAGE SIMULATION OF HIGH ARCH DAMS IN EARTHQUAKES[C]// World Conference on Earthquake Engineering. 2008.
[4] 周靖人, 魏炯, 王青元, 等. 基于修正莫尔-库仑准则的围岩瞬态卸荷塑性变形分析. 东北大学学报 (自然科学版), 2017, 38(2): 275-279.
[5] 周辉, 卢景景, 徐荣超, et al. 硬脆性大理岩拉剪破坏特征与屈服准则研究. 岩土力学, 2016, 37(2).
[6] 贾善坡, 陈卫忠, 杨建平, et al. 基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施. 岩土力学, 2010, 31(7). :2051-2058.
[7] 周火明. 三峡船闸边坡岩体拉剪试验及强度准则研究. 岩石力学与工程学报, 2005, 24(24):4418-4421.
[8] 李平恩. Drucker-Prager准则在拉剪区的修正. 岩石力学与工程学报, 2010, 29(A01):3029-3033.
[9] Saksala T . Damage–viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(13):1362-1386.
[10] Cen D, Huang D . Direct Shear Tests of Sandstone Under Constant Normal Tensile Stress Condition Using a Simple Auxiliary Device. Rock Mechanics and Rock Engineering, 2017, 50(6):1425-1438.
[11] 李建林. 三峡工程岩石拉剪断裂特性的试验研究. 地下空间与工程学报, 2002, 22(2):149-152.
[12] 金丰年. 单轴拉伸试验的完全应力—应变曲线[C]// 全国岩石力学与工程学术大会. 1996.
[13] Weiren L, Manabu T . ANISOTROPY OF STRENGTH AND DEFORMATION OF INADA GRANITE UNDER UNIAXIAL TENSION. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(12):2463-2472.
[14] 张绪涛,,张强勇,袁圣渤,王 超,高 强. 岩石轴向直接拉伸试验装置的研制及应用. 岩石力学与工程
[15] 宫凤强, 罗松, 李夕兵, et al. 红砂岩张拉破坏过程中的线性储能和耗能规律. 岩石力学与工程学报, 2018.
[16] 张树文, 鲜学福, 周军平, et al. 基于巴西劈裂试验的页岩声发射与能量分布特征研究. 煤炭学报, 2017.
[17] 代高飞, 夏才初, 晏成. 龙滩工程岩石试件在拉伸条件下的变形特性试验研究. 岩石力学与工程学报, 2005, 24(3):384-388.
[18] 计宏, 李琰庆. 岩石受拉破裂过程及其导水性研究. 西安科技大学学报, 2008, 28(3):450-454.
[19] 周辉, 卢景景, 徐荣超, et al. 硬脆性大理岩拉剪破坏特征与屈服准则研究. 岩土力学, 2016, 37(2):305-314.
[20] Clausen J, Damkilde L. An exact implementation of the Hoek–Brown criterion for elasto-plastic finite element calculations. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(6):831-847.
[21] Fuzheng L . 拉伸和拉剪状态下岩石力学性质的研究. 长江科学院院报, 1996, 13(3):35-39.
[22] 李守定, 李晓, 郭静芸, et al. 岩石拉伸剪切破裂试验研究. 工程地质学报, 2014, 22(4):655-666.
[23] Hoek E, Brown E T . Practical estimates of rock mass strength. Int.j.rock Mech.min.sci, 1997, 34(8):1165-1186.