含沙水中长短叶片混流式水轮机内部流动特性研究

朱乔琦 袁帅 邓聪 刘小兵

中国农村水利水电 ›› 2019 ›› (9) : 220-223.
水电建设

含沙水中长短叶片混流式水轮机内部流动特性研究

  • 朱乔琦1,袁帅2,邓聪1,刘小兵2
作者信息 +

Numerical Simulation of Long and Short Blade Francis Turbine under Sand Water Condition

Author information +
稿件信息 +

摘要

采用Partical两相流模型对高泥沙河流高水头电站长短叶片混流式水轮机小流量工况内部固液两相流动特性,进行了全流道三维湍流计算。计算结果表明:转轮低压区主要集中在叶片出口区域,最低压力发生在长叶片背面靠近出口处,长短叶片的头部和尾部的泥沙体积分数均较高,其中长叶片正面靠出口处泥沙相体积分数最大,与实际电站长叶片正面出口区域泥沙磨损严重较吻合。

Abstract

The Partical two-phase flow model was used to calculate the three-phase turbulent flow of the full-flow channel in the small-flow working condition of long-segment mixed-flow turbine of the high-salt river high-head hydropower station. The calculation results show that the low pressure zone of the runner is mainly concentrated in the blade exit area. The lowest pressure occurs at the back of the long blade near the exit. The sediment volume fraction of the head and tail of the long and short blades is high. The sandstone volume fraction is the largest, which is consistent with the sediment wear in the front exit area of the actual power plant.

关键词

关键词:长短叶片 / 混流式水轮机 / 含沙水 / 内部流动 / 数值模拟

Key words

Long and short blade / Francis turbine / sandy water / Internal flow / numerical simulation

基金

国家自然科学基金资助项目;四川省流体机械重点实验室开放研究基金资助项目

引用本文

导出引用
朱乔琦 袁帅 邓聪 刘小兵. 含沙水中长短叶片混流式水轮机内部流动特性研究[J].中国农村水利水电, 2019(9): 220-223
. Numerical Simulation of Long and Short Blade Francis Turbine under Sand Water Condition[J].China Rural Water and Hydropower, 2019(9): 220-223

参考文献

[1]易艳林,陆力.水轮机泥沙磨损研究进展[J].水利水电技术,2014,45(04):160-163.
[2]PP Gohil,RP Saini.Coalesced effect of cavitation and silt erosion in hydro turbines—A review[J].Renewable & Sustainable Energy Reviews,2014,33 (2):280-289.
[3]张晓旭,张思青,刘凯.基于固液两相流动的低比转速混流式水轮机转轮内部流场模拟[J].水电能源科学,2015,33(07):168-171.
[4]黄剑峰,张立翔,姚激,龙立焱.水轮机泥沙磨损两相湍流场数值模拟[J].排灌机械工程学报,2016,34(02):145-150.
[5]米紫昊,李太江,李勇,刘刚.基于欧拉固液两相流模型的混流式水轮机导水机构磨蚀损伤研究[J].水利水电技术,2014,45(11):116-120.
[6]李琪飞,李仁年,韩伟,敏政.不同固相体积分数下水轮机内部两相流动的数值模拟[J].兰州理工大学学报,2009,35(04):43-47.
[7]马越,张海库,刘德民,刘小兵.长短叶片混流式水轮机内部流动数值预测[J].排灌机械工程学报,2013,31(10):879-883.
[8]李佳楠,袁帅,刘小兵.长短叶片混流式水轮机全流道内部流场数值模拟研究[J].中国农村水利水电,2018(07):161-164.
[9]Thapa, Singh B , Thapa, et al. Current research in hydraulic turbines for handling sediments[J]. Energy, 2012, 47(1):62-69.
[10]Thapa B S , Dahlhaug O G , Thapa B . Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine[J]. Renewable & Sustainable Energy Reviews, 2015, 49:1100-1113.
[11]李国威,冯新伟,崔俊奎,等.两种叶型离心泵内固液两相流场的对比[J].南水北调与水利科技,2012,10,(02): 116-119.
[12]汪家琼,蒋万明,孔繁余,等.基于Particle模型固液两相流离心泵流场数值模拟[J].排灌机械工程学报,2013,31(10):846-850+878.
[13]李文锋,冯建军,朱国俊,等.基于CFD的固液两相离心泵内部流动及磨蚀特性研究[J].西安理工大学学报,2017,33(01):46-52.
[14]王俊雄,袁帅,余志顺,刘小兵.高水头电站水轮机沙水流动特性的数值研究[J].水电能源科学,2019,37(01):148-151+171.
[15]施卫东,邢津,张德胜,等.后掠式叶片轴流泵固液两相流数值模拟与优化[J].农业工程学报,2014,30(11):76-82+293.
[16]Ansys Inc. ANSYS CFX—Solver Theory Guide Release 14.5[M].New York:Ansys Inc,2013.

278

访问

0

引用

详细情况

段落导航
相关文章

/