华北地区夏玉米水分生产率多参数全局敏感性分析

于颖多 陈华堂 魏征 张宝忠

PDF(1630 KB)
中国农村水利水电 ›› 2019 ›› (9) : 43-48.
农田水利

华北地区夏玉米水分生产率多参数全局敏感性分析

  • 于颖多1,2 ,陈华堂3 ,魏 征1,2 ,张宝忠1,2
作者信息 +

Global Sensitivity Analysis of Summer Maize Water Productivity in North China

  • YU Ying-duo1,2 ,CHEN Hua-tang3 ,WEI Zheng1,2 ,ZHANG Bao-zhong1,2
Author information +
稿件信息 +

摘要

量化限制因素的敏感性对协同提升作物水分生产率具有重要意义,为了探讨作物水分生产率在不同土壤、气象以及田间管理措施下参数的敏感性,以华北地区夏玉米为研究对象,采用扩展傅里叶幅度检验法,量化了基于DNDC模型的夏玉米水分生产率对土壤、气象和田间管理(灌溉量、施肥量)等10个参数的敏感程度,结果表明: DNDC模型能够有效地模拟0-50cm土壤水分、作物蒸发蒸腾量、作物生长过程以及产量;灌溉水量、土壤初始氨氮浓度、CO2浓度、第二次施肥量、降雨量以及日最高温度是不同水文年条件下对夏玉米水分生产率敏感程度高的限制因素。当水文年型由丰水年-平水年-枯水年转变时,灌溉水量的敏感性呈高于施肥量的敏感性的变化趋势,因此,考虑限制因素的敏感程度将更有助于提出区域分异下水分生产率多要素协同提升的技术途径。 关键词:水分生产率;全局敏感性分析;模型;DNDC;夏玉米

Abstract

It is essential to quantify the parameters' sensitivity to improve the crop water productivity. Summer maize is used as the research object so as to investigate the parameters' sensitivity in different soils,meteorology and tillage measures of summer maize water productivity. The extended Fourier amplitude test is used as the analysis method. Research results show that the DNDC model can effectively simulate the soil moisture and crop growth process with 0~ 50 cm soil moisture,ETc,crop growth process and yield. Irrigation water volume, initial soil ammonium concentration,CO2 concentration,the second fertilization amount,rainfall and daily maximum temperature are factors which can limit summer maize water productivity in different hydrological years. When the hydrological age is changed from flood year to flat year and then to low flow year,the sensitivity of the irrigation water is higher than that of the fertilization amount. Therefore,the sensitivity of the limiting factor will be helpful to improve the regional agricultural water production efficiency and multi-elements,and thus enhancing the technical approach.

关键词

水分生产率 / 全局敏感性分析 / 模型 / DNDC / 夏玉米

Key words

water use efficiency / global sensitivity / model / DNDC / maize

基金

“十 三 五 ”国 家 重 点 研 发 计 划 资 助 项 目 ( 2017YFC0403200) ; 优秀青年科学基金项目“蒸散发尺 度效应与时空尺度拓展”( 51822907) ; 中国水利水电科学 研究院基本科研业务费专项( 节基本科研 01881910) 。

引用本文

导出引用
于颖多 陈华堂 魏征 张宝忠 . 华北地区夏玉米水分生产率多参数全局敏感性分析[J].中国农村水利水电, 2019(9): 43-48
YU Ying-duo, CHEN Hua-tang, WEI Zheng, ZHANG Bao-zhong. Global Sensitivity Analysis of Summer Maize Water Productivity in North China[J].China Rural Water and Hydropower, 2019(9): 43-48

参考文献

[1] 魏占民. 干旱区作物—水分关系与田间灌溉水有效性的SWAP模型模拟研究[D]. 内蒙古农业大学, 2003.
[2] 邢会敏, 徐新刚, 冯海宽, 等. 基于AquaCrop模型的北京地区冬小麦水分利用效率[J]. 中国农业科学, 2016(23):4507-4519.
[3] 李石琳. 基于涡度相关法和SIMDual_Kc模型的夏玉米水分利用效率及其影响因素研究[D]. 东北农业大学, 2014.
[4] Jiang Yao, Xu Xu, Huang Quanzhong, et al. Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model[J]. Agricultural Water Management, 2015,147:67-81.
[5] 郝远远. 内蒙古河套灌区水文过程模拟与作物水分生产率评估[D]. 中国农业大学, 2015.
[6] 王昆, 莫兴国, 林忠辉, 等. 植被界面过程(VIP)模型的改进与验证[J]. 生态学杂志, 2010(02):387-394.
[7] 胡广录, 赵文智, 武俊霞. 绿洲灌区小麦水分生产率及其影响因素的灰色关联分析[J]. 中国沙漠, 2010(02):369-375.
[8] 胡广录. 绿洲灌区农作物水分生产率影响因素的主成分分析[J]. 甘肃水利水电技术, 2012(02):25-27.
[9] Li Xiaolin, Zhang Xiaotao, Niu Jun, et al. Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China:[J]. Scientific Reports, 2016,6:37971.
[10] Saltelli Andrea. Sensitivity Anaysis as an Ingredient of Modeling[J]. Statistical Science, 2000,15(4):377-395.
[11] Saltelli Andrea, Annoni Paola. How to avoid a perfunctory sensitivity analysis[J]. Environmental Modelling & Software, 2010,25(12):1508-1517.
[12] Saltelli Andrea, Tarantola Stefano, Campolongo Francesca, et al. Sensitivity analysis in practice: a guide to assessing scientific models[M]. John Wiley & Sons, 2004.
[13] 姜志伟, 陈仲新, 周清波, 等. CERES-Wheat作物模型参数全局敏感性分析[J]. 农业工程学报, 2011(01):236-242.
[14] 何亮, 赵刚, 靳宁, 等. 不同气候区和不同产量水平下APSIM-Wheat模型的参数全局敏感性分析[J]. 农业工程学报, 2015(14):148-157.
[15] 何亮, 侯英雨, 赵刚, 等. 基于全局敏感性分析和贝叶斯方法的WOFOST作物模型参数优化[J]. 农业工程学报, 2016(02):169-179.
[16] 吴锦, 余福水, 陈仲新, 等. 基于EPIC模型的冬小麦生长模拟参数全局敏感性分析[J]. 农业工程学报, 2009(07):136-142.
[17] 金秀良. 基子AqoaCrop模型与多源遥感数据的北方冬小麦水分利用效率估算[D]. 扬州大学, 2015.
[18] 郭佳伟, 邹元春, 霍莉莉, 等. 生物地球化学过程模型DNDC的研究进展及其应用[J]. 应用生态学报, 2013(02):571-580.
[19] Babu Y. Jagadeesh, Li C., Frolking S., et al. Modelling of methane emissions from rice-based production systems in India with the denitrification and decomposition model: field validation and sensitivity analysis[J]. CURRENT SCIENCE-BANGALORE-, 2005,89(11):1904.
[20] Miehle Peter, Livesley Stephen J., Li Changsheng, et al. Quantifying uncertainty from large‐scale model predictions of forest carbon dynamics[J]. Global Change Biology, 2006,12(8):1421-1434.
[21] Zhang Yu, Li Changsheng, Zhou Xiuji, et al. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture[J]. Ecological Modelling, 2002,151(1):75-108.
[22] 刘战东, 刘祖贵, 宁东峰, 等. 深松耕作对玉米水分利用和产量的影响[J]. 灌溉排水学报, 2015(05):6-12.
[23] Hatfield Jerry L., Sauer Thomas J., Prueger John H. Managing Soils to Achieve Greater Water Use Efficiency[J]. Agronomy Journal, 2001,93(2):271-280.
PDF(1630 KB)

372

访问

0

引用

详细情况

段落导航
相关文章

/