为解决复杂的区域水资源优化配置问题,以区域缺水率最小和污染物排放量最小为目标函数建立了水资源优化配置模型,并以汾河下游谷地供水区为例,预测其在规划水平年20%、50%、75%和95%来水频率下的供需水量。针对飞蛾扑火算法(MFO)存在的搜索耗时较长、易陷入局部最优的问题,改进其烛火更新公式及对数螺旋函数。通过对群智能算法中常用的测试函数做仿真实验,对比分析了改进前后MFO算法的寻优结果,并采用改进的MFO算法对模型进行求解。实例结果表明,所构建的区域水资源优化配置模型合理有效,改进的飞蛾扑火算法收敛速度快,寻优性能优越,可用于水资源优化配置领域。
Abstract
The water resource optimization allocation model is established with the minimum regional water shortage rate and the minimum
pollutant emission as the objective function. Taking the valley in the lower reaches of the Fenhe River as an example,this paper predicts the
water supply and demand in 2025 on condition of 20%,50%,75% and 95% rainfall frequency. Aiming at the problem that the calculation
of Moth-Flame Optimization algorithm takes a long time and is easy to fall into local optimum,the adaptive formula for the number of flames
and the logarithmic spiral formula are improved. Through the simulation experiment of the test function commonly used in swarm intelligence
algorithm,the optimization results of Moth-Flame Optimization algorithm before and after the improvement are compared and analyzed. The
improved Moth-Flame Optimization algorithm is used to solve the model,and the results show that the water resource optimization allocation
model is reasonable and effective,and the improved Moth-Flame Optimization algorithm has fast convergence rate and optimal performance,
which can be used for an analysis of optimal allocation of water resources.
关键词
改进 MFO 算法 /
水资源优化配置 /
多目标优化 /
群智能优化算法 /
自适应权重
{{custom_keyword}} /
Key words
improved moth - flame optimization algorithm /
water resources optimized allocation /
multi - objective optimization /
group
intelligent optimization algorithm /
adaptive weight
{{custom_keyword}} /
基金
山西省水利科学技术计划项目“复杂大水网水库群联合
优化调度关键技术研究”( 2017DSW02) ; 云南省水利厅
科技项目“水资源综合节水与非常规水源利用研究”。
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]侯景伟,孔云峰,孙九林.Pareto蚁群算法与遥感技术耦合的水资源优化配置[J].控制理论与应用,2012,29(09):1157-1162.
[2]邓丽娟.基于改进粒子群算法的区域水资源配置研究[J].水利规划与设计,2015(10):27-28+38.
[3]李苏,刘彬.改进的人工鱼群算法在邯郸市水资源优化配置中的应用[J].水电能源科学,2016,34(12):10-14.
[4]MIRJALILI S. Moth-flame optimization algorithm:a novel nature-inspired heuristic paradigm [J]. Knowledge-Based Systems,2015,89 (7):228-249.
[5]崔东文.飞蛾火焰优化算法在承压含水层参数反演中的应用[J].长江科学院院报,2016,33(07):28-33.
[6]崔东文,金波.飞蛾火焰优化算法在马斯京根模型参数优化中的应用[J].人民珠江,2016,37(08):30-34.
[7]吴伟民,李泽熊,林志毅,吴汪洋.改进飞蛾捕焰算法在网络流量预测中的应用[J].计算机工程,2017,43(10):153-159+166.
[8]王子琪,陈金富,张国芳,杨琪,代宇涵.基于飞蛾扑火优化算法的电力系统最优潮流计算[J].电网技术,2017,41(11):3641-3647
[9]徐格宁,黄双云,康忠元,徐彤.基于改进型飞蛾火焰算法的区间非概率可靠性优化设计[J].机械设计与研究,2018,34(04):37-40+45.
[10]张强. 基于MFO算法与PCNN的图像分割研究[D].兰州大学,2018.
[11]武年丰.建设大水网破解水瓶颈——山西省十年科学治水历程简述[J].前进,2012(11):18-19.
[12]薛金平.建设山西大水网 为转型跨越提供水资源保障[J].山西水利科技,2012(03):1-2+5.