基于Copula函数的日含沙量随机模拟

张继鹏, 彭 杨, 时玉龙, 赵晓东, 丁梦霞

PDF(2040 KB)
中国农村水利水电 ›› 2019 ›› (9) : 83-86.
水环境与水生态

基于Copula函数的日含沙量随机模拟

  • 张继鹏1 ,彭 杨1 ,时玉龙1 ,赵晓东1 ,丁梦霞2
作者信息 +

Stochastic Simulation of Daily Sediment Concentration Process Based on Copula Function 

  • ZHANG Ji-peng1 ,PENG Yang1 ,SHI Yu-long1 ,ZHAO Xiao-dong1 ,DING Meng-xia2
Author information +
稿件信息 +

摘要

摘 要:本文考虑相邻截口含沙量之间的相关关系,建立了基于Copula函数的日含沙量随机模拟模型。并针对日含沙量模拟截口较多,截口边缘分布难以统一确定的特点,采用正态分位数变换对实测含沙量资料进行了标准正态化处理。以屏山水文站日含沙量为研究对象,采用该模型对其日含沙量过程进行随机模拟,并将模拟结果与分期平稳AR模型模拟结果进行对比。结果表明,本文所建立的模型能较好保持实测日含沙量资料的统计特性,计算精度较高,各统计参数的通过率均在98%以上,最大平均相对误差4.22%,且在偏态性和非线性相关关系方面要优于分期平稳AR模型,说明本模型可用于日含沙量过程的长序列随机模拟。

Abstract

This paper presents a stochastic model for modeling daily suspended sediment concentrations ( SSCs) ,with the use of Copula function of accounting for temporal correlation. It first normalizes the daily SSCs observations by using the normalized quantile transform method to enhance the marginal distribution selection of SSCs. Next,the bivariate Archimedean copulas are used to construct the joint distributions of adjacent daily SSCs. Finally,the developed stochastic model is applied to generate long-term daily SSCs sequences of the Pingshan station on Jinsha River. The widely used autoregressive ( AR) model results are also used as references,which shows that the proposed stochastic model can preserve the statistical characteristics of the historical daily SSCs with a high level of accuracy. The differences of statistical values between simulated and observed series are small. Above 98% of average relative errors of statistics are less than 10%,and the maximum is 4. 22%. In addition,the proposed model performed better than the AR model in preserving the skewness and lag - 1 correlation. This study suggests that the proposed Copula - based model is able to generate long - term daily SSCs data,which may have significant ramifications to water resources management

关键词

日含沙量 / 相关关系 / Copula 函数 / 标准正态化 / 随机模拟

Key words

daily suspended sediment concentration / correlation / Copula function / standard normalization / stochastic simulation

基金

国家重点研发计划项目( 2016YFC0402308) ; 国家自然 科学基金面上项目( 51679088) 。

引用本文

导出引用
张继鹏, 彭 杨, 时玉龙, 赵晓东, 丁梦霞. 基于Copula函数的日含沙量随机模拟[J].中国农村水利水电, 2019(9): 83-86
ZHANG Ji-peng, PENG Yang, SHI Yu-long, ZHAO Xiao-dong, DING Meng-xia. Stochastic Simulation of Daily Sediment Concentration Process Based on Copula Function [J].China Rural Water and Hydropower, 2019(9): 83-86

参考文献

[1] 王文圣, 金菊良, 等.水文水资源随机模拟技术[M]. 成都: 四川大学出版社, 2007. [2] 丁晶, 刘权, 等.随机水文学[M]. 北京: 中国水利水电出版社, 1997. [3] 王文圣, 丁晶.基于核估计的多变量非参数随机模型初步研究[J].水利学报, 2003, 02(1): 9-14 [4] 王文圣, 袁鹏, 等.门限自回归模型及其在水文随机模拟中的应用[J].四川水力发电, 2001, S1(1):47-50+107 [5] 王文圣, 丁晶, 邓育仁.一类洪水预报的非线性时序模型——指数自回归模型[J].四川联合大学学报(工程科学版), 1997, 06(1):1-5+11 [6] 杨荣富, 丁晶, 刘国东.具有水文基础的人工神经网络初探[J].水利学报, 1998, 8(1):23-27 [7] 王文圣.非参数模型及其在水文水资源随机模拟中的应用[D]. 四川大学, 1999. [8]Lall U, Rajagopalan B, Tarboton D G.A nonparametric wetdry spell model for resampling daily precipitation[J].Water Resources Research, 1996, 32(9):2803-2823 [9] 王文圣, 丁晶, 等.非参数解集模型及其在水文随机模拟中的应用[J].四川水力发电, 1999, 01(1):60-62+84 [10] 赵太想, 王文圣, 等.基于小波消噪的改进的非参数解集模型[J].四川大学学报工程科学版, 2005, 05(1):1-4 [11]Favre A C, Adlouni S E, Perreault L, et al.Multivariate hydrological frequency analysis using copulas[J].Water Resources Research, 2004, 40(1):290-294 [12]熊立华, 郭生练.两变量极值分布在洪水频率分析中的应用研究[J].长江科学院院报, 2004, 21(2):35-37 [13]Singh V P, Zhang L.IDF curves using the frank Archimedean copula[J].Journal of Hydrologic Engineering, 2007, 12(6):651-662 [14] Kao S C, Govindaraju R S.Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas[J].Water Resources Research, 2008, 2(1): W02415-1-W02415-19-0 [15]李计, 李毅, 宋松柏, 崔晨风.基于函数的多维干旱变量联合分布[J].自然资源学报, 2013, 28(02):312-320 [16] 任璐.基于Copula的汾河上游水文干旱频率的多时间尺度分析[D]. 太原理工大学, 2016. [17]Guo S, Chen L, Singh V P.Flood coincidence risk analysis using multivariate copula functions[J].Journal of Hydrologic Engineering, 2007, 17(6):742-755 [18]闫宝伟, 郭生练, 等.长江和清江洪水遭遇风险分析[J].水利学报, 2010, 41(5):553-559 [19]陈璐, 郭生练, 等.长江上游干支流洪水遭遇分析[J].水科学进展, 2011, 22(3):323-330 [20] Bárdossy A, Pegram G G S.Copula based multisite model for daily precipitation[J].Hydrology and Earth System Science, 2009, 13(1):2299-2314 [21] Lee T, Salas J D.Using copulas for stochastic streamflow generation[C]. World Environmental and Water Resources Congress, 2014: 1-10. [22]闫宝伟, 郭生练, 等.基于函数的径流随机模拟[J].四川大学学报工程科学版, 2010, 42(01):5-9 [23]陈璐, 郭生练, 等.长江上游多站日流量随机模拟方法[J].水科学进展, 2013, 24(04):504-512 [24] Nelsen R B.An Introduction to copulas[M]. New York: Springer, 1999. [25] 郭生练, 闫宝伟, 等.Copula函数在多变量水文分析计算中的应用及研究进展[J].水文, 2008, 03(1):1-7 [26]郭辉, 齐梅兰, 等.基于模型的日流量过程随机模拟研究[J].水力发电学报, 2012, 31(06):22-27 [27]周研来, 梅亚东, 张代青.一种新的径流过程随机模拟方法[J].水利水电科技进展, 2011, 31(03):9-12 [28] 肖义, 郭生练, 等.一种新的洪水过程随机模拟方法研究[J].四川大学学报工程科学版, 2007, 02(1):55-60
PDF(2040 KB)

385

访问

0

引用

详细情况

段落导航
相关文章

/