地下水污染在我国已经相当严重。通过水质监测点快速准确的确定污染源排放强度及其动态变化具有重要意义。基于SCE-UA优化算法,通过将地下水流和溶质运移数值模型耦合到优化模型,数值模型模拟计算的结果作为约束条件返回到优化模型中,优化过程通过SCE-UA算法进行反射、收缩和突变3个过程求解。实例分析表明:①在足够种群进化代数条件下,优化模型可以有效反演污染源排放强度及其动态变化;②优化模型对多污染源分别在稳定流和非稳定流下、定浓度和不定浓度排放的反演均可以有效、 快速地搜索到全局最优解, 具有较强的优化性能。
Abstract
Groundwater pollution is a very serious problem in China. It is of great significance to fast and accurately identify characteristics of groundwater sources through monitor data. Based on SCE-UA optimization algorithm, for the structure of groundwater inverse problem, combines groundwater flow numerical model, solute transport numerical model and SCE-UA optimization algorithm and design an optimization model. The numerical models simulate solute transport in groundwater and produces constraint conditions and the solution can be obtained through reflection, contraction and mutation of SCE-UA algorithm. Case studies show that this S/O model: ① with sufficient evolution generations, optimization model can effectively and accurately determine groundwater contaminant characteristics; ② the proposed identification model can fast get globally optimal solutions both to multiple pollution sources under steady-state flow and transient flow conditions, constant concentration discharges and non-constant concentration discharges.
关键词
SCE-UA算法 /
优化模型 /
地下水数值模拟 /
污染源反演
{{custom_keyword}} /
Key words
SCE-UA algorithm /
optimization model /
groundwater numerical simulation /
groundwater pollution identification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]张人权. 地下水资源特性及其合理开发利用[J]. 水文地质工程地质, 2003,30(6):1-5.
[2]席北斗, 李娟, 汪洋, 等. 京津冀地区地下水污染防治现状, 问题及科技发展对策[J]. 环境科学研究, 2019,32(1):1-9.
[3]MEYER P D, VALOCCHI A J, EHEART J W. Monitoring network design to provide initial detection of groundwater contamination[J]. Water Resources Research, 1994,30(9):2 647-2 659.
[4]WAGNER B J. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling[J]. Journal of Hydrology, 1992,135(1-4):275-303.
[5]ALAPATI S, KABBLA Z J. Recovering the release history of a groundwater contaminant using a non‐linear least‐squares method[J]. Hydrological processes, 2000,14(6):1 003-1 016.
[6]FODDIS M L, ACKERER P, MONTISCI A, et al. ANN-based approach for the estimation of aquifer pollutant source behaviour[J]. Water Science and Technology: Water Supply, 2015,15(6):1 285-1 294.
[7]JHA M, DATTA B. Three-dimensional groundwater contamination source identification using adaptive simulated annealing[J]. Journal of Hydrologic Engineering, 2013,18(3):307-317.
[8]MACHIWAL D, JHA M K. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques[J]. Journal of Hydrology: Regional Studies, 2015,4:80-110.
[9]江思珉, 蔡奕, 王敏, 等. 基于和声搜索算法的地下水污染源与未知含水层参数的同步反演研究[J]. 水利学报, 2012,43(12):1 470-1 477.
[10]江思珉, 张亚力, 蔡奕, 等. 单纯形模拟退火算法反演地下水污染源强度[J]. 同济大学学报 (自然科学版), 2013,41(2):253-257.
[11]江思珉, 王佩, 施小清, 等. 地下水污染源反演的 Hooke-Jeeves 吸引扩散粒子群混合算法[J]. 吉林大学学报 (地球科学版), 2012,42(6):1 866-1 872.
[12]顾文龙, 卢文喜, 张宇, 等. 基于贝叶斯推理与改进的 MCMC 方法反演地下水污染源释放历史[J]. 水利学报, 2016,47(6):772-779.
[13]肖传宁, 卢文喜, 赵莹, 等. 基于径向基函数模型的优化方法在地下水污染源识别中的应用[J]. 中国环境科学, 2016,36(7):2 067-2 072.
[14]张江江. 地下水污染源解析的贝叶斯监测设计与参数反演方法[D]. 杭州: 浙江大学, 2017.
[15]DUAN Q Y, SOROOSH S, GUPTA V K. Optimal use of the SCE-UA global optimization method for calibrating watershed models[J]. Elsevier, 1994,158(3-4):265-284.
[16]GEORGE K. Efficient subspace probabilistic parameter optimization for catchment models[J]. Water resources research, 1997,33(1):177-185.
[17]祝晓彬, 吴吉春, 吴剑锋. 复合形进化重组方法在水文地质参数识别中的应用[J]. 地下水, 2011(6):44.
[18]HARBAUGH A W. Modflow-2005, the US Geological Survey Modular Groundwater Model: the Groundwater Flow Process[Z]. Reston, VA: US Department of the Interior, US Geological Survey, 2005.
[19]ZHENG C M, WANG P P. MT3DMS: A Modular Three-Dimensional Multi-Species Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User's Guide[Z]. Alabama Univ University, 1999.
[20]SINGH R M, DATTA B. Groundwater Pollution Source Identification and Simultaneous Parameter Estimation Using Pattern Matching by Artificial Neural Network[J]. Environmental Forensics, 2004, 5(3): 143-153.