响应面法优化高铁酸钾-臭氧预氧化西北农村微污染水

郭可欢 张文莉 李杰 王亚娥

PDF(2491 KB)
中国农村水利水电 ›› 2020 ›› (12) : 139-143.
水环境与水生态

响应面法优化高铁酸钾-臭氧预氧化西北农村微污染水

  • 郭可欢,张文莉,李杰,王亚娥
作者信息 +

Response Surface Methodology for the Optimization of Potassium Ferrate-Ozone Pre-oxidation of Micro-polluted Water in Rural Areas in Northwest China

  • GUO Ke-huan,ZHANG Wen-li,LI Jie,WANG Ya-e
Author information +
稿件信息 +

摘要

为了对西北农村地区微污染饮用水源水进行预处理,采用了高铁酸钾-臭氧预氧化工艺,首先比较了臭氧、高铁酸钾氧化能力的大小。在单因素试验基础上,以高铁酸钾投加量、初始pH、慢速搅拌时间为考察因素,CODMn去除率为响应值构建了响应曲面模型,分析了3个独立因素及各因素间相互作用,确定了最佳预氧化工艺参数。结果表明:①在初始浓度CODMn8.00~10.00 mg/L、氨氮1.3~1.5 mg/L及浊度8.54~13.62 NTU进水条件下,高铁酸钾对微污染水CODMn和浊度的处理效果好于臭氧处理,对氨氮的氧化效果较差。二者协同作用要好于单独高铁酸钾及臭氧的处理效果,高铁酸钾投加量达11.5 mg/L、臭氧投加量6mg/L时,体系CODMn、氨氮及浊度去除率分别达67.15%、17.43%、61.71%。②高铁酸钾投加量、初始pH、慢速搅拌时间为高铁酸钾-臭氧预氧化处理的主要影响因素,对CODMn去除率的影响大小排序:高铁酸钾投加量>初始pH>慢速搅拌时间。③最佳预氧化工艺参数:高铁酸钾投加量11.75 mg/L、初始pH 7.74、慢速搅拌时间42.72 min,微污染水CODMn去除率为72.96%。该条件下,实际运行出水CODMn 2.38~2.98 mg/L,以此证明高铁酸钾-臭氧预氧化工艺是有效的。

Abstract

In order to pre-treat the slightly polluted drinking water source water in the rural areas of northwest China, the potassium ferrate-ozone pre-oxidation process was used. First, the oxidation capacity of ozone and potassium ferrate was compared. Based on the single-factor test, the response surface model was constructed based on the dosage of potassium ferrate, initial pH and slow stirring time, and the CODMn removal rate was the response value. Three independent factors and their interactions were analyzed to determine the optimal pre-oxidation process parameters. The results showed that: (1)Under the initial concentration of CODMn 8.00~10.00mg/L, ammonia nitrogen 1.3~1.5mg/L and turbidity 8.54~13.62NTU, the treatment effect of potassium ferrate on CODMn and turbidity of micro-polluted water was better than that of ozone treatment. However, the oxidation effect on ammonia nitrogen was poor. The synergy effect was better than that of potassium ferrate and ozone alone. When the dosage of potassium ferrate reached 11.5 mg/L and the dosage of ozone was 6 mg/ L, the removal rates of CODMn, ammonia nitrogen and turbidity of the system reached 67.15%, 17.43%, and 61.71%, respectively.(2)Potassium ferrate dosage, initial pH, slow stirring time were the main influencing factors of this pre-oxidation treatment, the effect on CODMn removal rate: potassium ferrate dosage > initial pH > slow Stirring time. (3)The best pre-oxidation process parameters: potassium ferrate dosage of 11.75 mg/L, initial pH of 7.74, slow stirring time of 42.72 min, and the CODMn removal rate was 72.96%. Under this condition, the actual effluent water CODMn 2.38~2.98 mg/L, which proves that the potassium ferrate-ozone pre-oxidation process is effective.

关键词

高铁酸钾 / 臭氧 / 响应面 / 农村微污染水 / 预氧化

Key words

potassium ferrate / ozone / response surface / rural micro-polluted water / pre-oxidation

基金

西部典型缺水地区农村供水排水一体化技术及应用示范

引用本文

导出引用
郭可欢 张文莉 李杰 王亚娥. 响应面法优化高铁酸钾-臭氧预氧化西北农村微污染水[J].中国农村水利水电, 2020(12): 139-143
GUO Ke-huan, ZHANG Wen-li, LI Jie, WANG Ya-e. Response Surface Methodology for the Optimization of Potassium Ferrate-Ozone Pre-oxidation of Micro-polluted Water in Rural Areas in Northwest China[J].China Rural Water and Hydropower, 2020(12): 139-143

参考文献

[1]杨艺,王瑞卿,宋晓维.农村地下水污染现状、危害及防治对策[J].环境保护,2014,42(15):34-36.
[2]武福平,齐海英,丁俊宏,等.活性炭-石英砂生物过滤处理微污染窖水的挂膜试验研究[J].水处理技术,2011,37(7):70-72,86.
[3]杨浩,张国珍,杨晓妮,等.粗滤/生物慢滤技术在集雨窖水处理中的生产应用[J].中国给水排水,2013,29(23):47-51.
[4]BOND T, GOSLAN E H, PARSONS S A, et al. Treatment of disinfection by-product precursors[J]. Environmental technology, 2011,32(1):1-25.
[5]KRASNER S W, MITCH W A, MC CURRY D L, et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review[J].Water Research, 2013,47(13):4 433-4 450.
[6]赵海华,袁建伟.臭氧、高锰酸钾及复合预氧化处理微污染水效果对比研究[J].中国农村水利水电,2014(7):89-91,96.
[7]JIANG J Q. Research progress in the use of ferrate(VI) for the environmental remediation[J]. Journal of Hazardous Materials,2007,146(3):617-623.
[8]LI C, LI X Z, GRAHAM N, et al. The aqueous degradation of bisphenol A and steroid estrogens by ferrate[J].Water Research,2008,42(1-2):109-120.
[9]SONG Y, DONG B, GAO N, et al. Huangpu River water treatment by microfiltration with ozone pretreatment[J]. Desalination, 2010,250(1):71-75.
[10]YUAN B L, LI X Z, GRAHAM N. Aqueous oxidation of dimethyl phthalate in a Fe(VI)-TiO2-UV reaction system[J].Water Research,2008,42(6-7):1 413-1 420.
[11]张国珍,尹振珑,武福平.臭氧强化BAF工艺处理微污染窖水[J]. 环境工程学报,2017,11(6):3 405-3 411.
[12]WANG H C, CHANG S H. Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysis[J]. Chemosphere,2008,71(2):388-397.
[13]ZHANG T, LU J F. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water [J]. Water Research,2008,42(6-7):1 563-1 570.
[14]SHARMA V K, RADEK Z, VARMA R S. Ferrates: greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015,48(2):182-191.
[15]THIR UGN ANASAMB AND HAMK, SIVAK UMARV. Optimization of treatment of grey wastewater using electro-Fenton technique: modeling and validation[J].Process Safety & Environmental Protection,2015,95:60-68.
[16]XU J, LONG Y Y, SHEN D S, et al. Optimization of Fenton treatment process for degradation of refractory organic sinpre-coagulated leachate membrane concentrates[J].Journal of Hazardous Materials,2016,323:674-680.
[17]闫晓涛,席春晓,李杰,等.响应面法优化微絮凝法处理黄河兰州段低温低浊水[J].干旱区资源与环境,2019,33(4):145-151.
[18]狄军贞,赵微,朱志涛,等.响应曲面法优化强化混凝工艺处理模拟微污染水[J].环境工程学报,2017,11(1):27-32.
[19]傅金祥,杨涛,林齐,等.次氯酸钠、高锰酸钾联合预氧化微污染水的中试研究[J].沈阳建筑大学学报(自然科学版),2006(3):437-440.
[20]何斐,李磊,徐炎华.微污染水源水处理技术研究进展[J].安徽农业科学,2008,36(11):4 672-4 673.
[21]曹璀文,金伟, 徐祖信,等. 羟基氧化铁催化臭氧氧化微污染有机物能效与机理研究[J]. 环境工程, 2016,34(10):1-5.
[22]陈俊,吴妍蓓,金杰,等.响应面法应用于臭氧处理偶氮废水优化研究[J].环境科学与技术,2018,41(8):146-152.
[23]蒋贞贞,朱俊任.响应面法优化聚合硫酸铁铝强化混凝处理工艺[J].湖北农业科学,2014,53(5):1 131-1 136.
[24]朱俊任,郑怀礼,张智,等.响应面法优化制备 PAFS-CPAM 复合混凝剂及其表征[J].化工学报,2012,63(12):4 019-4 027.
[25]张国钟.响应面法应用于臭氧深度处理制药废水优化研究[J].给水排水,2013,49(11):141-145.
[26]赵赫,张宏伟,王亮,等.臭氧预氧化对混凝-超滤处理微污染水的影响[J].天津大学学报(自然科学与工程技术版),2018,51(2):215-220.
[27]王剑,张正德.臭氧预氧化与常规工艺联用处理西氿备用水源水的试验[J].净水技术,2016,35(增刊):33-41.
[28]马军,韩帮军,张涛,等.臭氧多相催化氧化处理微污染水中试研究[J].环境科学学报,2006(9):1 412-1 419.
[29]CAMEL V, BERMOND A. The use of ozone and associated oxidation processes in drinking water treatment[J]. Water research, 1998,32(11):3 208-3 222.
[30]赵赫. 复合预氧化强化混凝-超滤工艺净水关键技术研究[D].天津:天津大学,2017.
[31]邢思初,隋铭皓,朱春艳.臭氧氧化水中有机污染物作用规律及动力学研究方法[J].四川环境,2011,29(6):112-117.
[32]ANQUANDAH G A K, SHARMA V K, KNIGHT D A, et al. Oxidation of trimethoprim by Ferrate(VI): kinetics, products, and antibacterial activity[J].Environmental Science & Technology, 2011,179(23):7 264-7 273.
[33]XU G R, ZHANG Y P, LI G B. Degradation of azo dye active brilliant redX-3B by composite Ferrate solution[J]. Journal of Hazardous Materials, 2009,161(2-3):1 299-1 305.
[34]LI C, LI X Z, GRAHAM N. A study of the preparation and reactivity of potassium Ferrate[J].Chemosphere, 2005,61(4):537-543.
[35]员建,燕维伟,温国蛟,等.不同预氧化剂强化直接过滤处理低温低浊模拟微污染水的试验研究[J].水处理技术,2013,39(1):101-105.
[36]KUSVURAN E, GULNAZ O, SAMIL A, et al. Detection of double bond-ozone stoichiometry by an iodimetric method during ozonation processes[J]. Journal of Hazardous Materials, 2010,175(1-3):410-416.
[37]李坤林, 苑宝玲, 叶谋仁. 高铁酸盐溶液的制备与去除氨氮的实验研究[J].安全与环境工程,2006,13(3):55-58.
PDF(2491 KB)

439

访问

0

引用

详细情况

段落导航
相关文章

/