Research on the Relationship between the Pressure Fluctuation and Dynamic Stress of Axial-flow Pump Based on Fluid-structure Interaction
HE Yu-zhen1
,GUO Yan-lei
2
Author information+
1.Linxia Water Power Bureau River Management Station,Linxia 731100,Gansu Province,China;
2. College of Energy and Power Engineering,Lanzhou University of Technology,Lanzhou 730050,China
By software CFX and Workbench, a combined calculation under multiple conditions flow field and structural response of the impeller is established with two-way coupling method, based on Reynolds-averaging N-S equations, two equation RNG k-ε turbulent model and elastic structural dynamic equation, so that it can analyze the blade dynamic stress and pressure fluctuation of inlet and outlet in axial-flow pump. At the same time, it predicts the rules of the deformation and stress distribution of blade. It turs out that the maximum displacement occurred in the blade tip close to the inlet and the root displacement is very small. It appears obvious stress concentration in place close to the inlet side where the blade root and the hub touch each other. The blade stress and deformation decrease as the flow increases. The frequency of the pressure fluctuation in front of the blade inlet depends on the frequency of blade. The amplitude of design condition is minimum.
HE Yu-zhen, GUO Yan-lei.
Research on the Relationship between the Pressure Fluctuation and Dynamic Stress of Axial-flow Pump Based on Fluid-structure Interaction[J].China Rural Water and Hydropower, 2020(12): 158-163
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]ZHANG D S,SHI W D,CHEN B,et al. Unsteady flow analysis and experimental investigation of Axial- flow pump [J]. Journal of Hydrodynamics,2010,22(1):35-43. [2]施卫东,王国涛,张德胜.基于流固耦合的轴流泵叶片应力特性[J]. 排灌机械工程学报,2013,31(9):737-740. [3]施卫东,王国涛,蒋小平,等.流固耦合作用对轴流泵内部流场影响的数值计算[J].流体机械,2012,40(1):31-34. [4]冯卫民,宋立,左磊. 轴流泵装置三维非定常湍流流场的数值模拟[J]. 排灌机械工程学报,2010,28(6):531-536. [5]吴新,黄乾. 高扬程贯流泵湍流流动及流固耦合数值模拟[J]. 人民黄河,2019,41(5):157-160. [6]陈佳,裴吉,袁寿其,等. 基于泵轴流固耦合的双向流道轴流泵装置的数值分析[J].中国农村水利水电,2016(11):169-174. [7]PEI J,YUAN S Q,BENRA F K,et al. Numerical prediction of unsteady pressure field within the whole flow passage of a radial single blade pump[J].ASME Journal of Fluids Engineering,2012,134:101-103. [8]刘厚林,徐欢,吴贤芳,等.流固耦合作用对离心泵内外特性的影响[J]. 农业工程学报,2012,28(13):82-87. [9]裴吉,袁寿其,袁建平. 流固耦合作用对离心泵内部流场影响的数值计算[J]. 农业机械学报,2009,40(12):107-112. [10]施卫东,徐燕,张启华,等.基于流固耦合的多级潜水泵叶轮结构强度分析[J]. 排灌机械工程学报,2013,44(5):71-73. [11]周颖,郑源,何中伟,等. 大型轴流泵反向发电压力脉动及流固耦合[J]. 排灌机械工程学报,2019,37(6): 480-485. [12]Benra F K,Dohmen H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C]∥ ASME Pressure Vessels and Piping Division Conference,2007. [13]谷朝红,姚熊亮,陈起富. 水轮机部件流固耦合振动特性研究[J]. 大电机技术,2001(6):47-52. [14]郑晓波, 罗兴琦,邬海军. 轴流式叶片的流固耦合振动特性分析[J]. 西安理工大学学报,2005,21(4):342-346. [15]李晓波.轴流转桨式水轮机叶片流固耦合动力特性分析[D].西安:西安理工大学,2010. [16]邱华. 水电机组运行稳定性研究[D]. 北京:清华大学,2002. [17]关醒凡. 轴流泵和斜流泵[M]. 北京:中国宇航出版社,2009. [18]王福军. 计算流体动力学分析-CFD软件原理与应用[M]. 北京:清华大学出版社,2004.